Personne :
Turgeon, Sylvie

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Turgeon
Prénom
Sylvie
Affiliation
Université Laval. Département des sciences des aliments
ISNI
ORCID
Identifiant Canadiana
ncf10325454
person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 17
  • Publication
    Accès libre
    Postprandial lipemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses
    (New York, NY : Elsevier Science, 2018-03-21) Ayala-Bribiesca, Erik; Turgeon, Sylvie; Pilon, Geneviève; Britten, Michel; Marette, André
    The aim of this study was to better understand the effect of calcium on the bioavailability of milk lipids from a cheese matrix using a rat model. Cheddar-type cheeses were manufactured with one of three types of anhydrous milk fat, control, olein or stearin, and salted with or without CaCl₂. The cheeses were fed to rats and postprandial lipemia was monitored. Feces were analyzed to quantify fatty acids excreted as calcium soaps. Higher calcium concentration in cheese caused a higher and faster triacylglycerol peak in blood, except for cheeses containing stearin. Furthermore, calcium soaps were more abundant in feces when the ingested cheese had been enriched with calcium and when the cheese was prepared with stearin. Increased lipid excretion was attributable to the affinity of saturated long-chain fatty acids for calcium. Results showed that lipid bioaccessibility can be regulated by calcium present in Cheddar cheese. This study highlights the nutritional interaction between calcium and lipids present in the dairy matrix and confirms its physiological repercussions on fatty acid bioavailability.
  • Publication
    Accès libre
    Seaweeds : a traditional ingredients for new gastronomic sensation
    (Boca Raton : CRC Press, 2017-02-08) Rioux, Laurie-Eve; Beaulieu, Lucie; Turgeon, Sylvie
    Seaweeds have a long tradition in Asian cuisine. In Canada and US, seaweed consumption is mostly limited to sushi and other imported Asian dish. However, seaweeds are well recognized for their richness in several nutrients such as fiber, protein and minerals. But what is limiting seaweed and seaweed derived ingredients utilization in home cooking? Finding fresh seaweeds within inland cities is one limiting step but also the seaweed marketing need to propel the image that seaweed are not only nutritive but can bring flavor and texture in cuisine dish. With the rise of TV cooking shows, blogs and online recipes hosted by several renowned chefs, it is now time to bring seaweed in the spotlight. The aim of this review is to look at seaweeds to support a wider use in culinary applications for their nutritional contribution but also from a sensory perspective.
  • Publication
    Accès libre
    Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions
    (Urbana, Ill. : American Dairy Science Association, 2017-03-18) Ayala-Bribiesca, Erik; Britten, Michel; Turgeon, Sylvie
    Calcium plays an important role in intestinal lipid digestion by increasing the lipolysis rate, but also limits fatty acid bioaccessibility by producing insoluble Ca soaps with long-chain fatty acids at intestinal pH conditions. The aim of this study was to better understand the effect of Ca on the bioaccessibility of milk fat from Cheddar-type cheeses. Three anhydrous milk fats (AMF) with different fatty acid profiles (olein, stearin, or control AMF) were used to prepare Cheddar-type cheeses, which were then enriched or not with Ca using CaCl2 during the salting step. The cheeses were digested in vitro, and their disintegration and lipolysis rates were monitored during the process. At the end of digestion, lipids were extracted under neutral and acidic pH conditions to compare free fatty acids under intestinal conditions in relation to total fatty acids released during the digestion process. The cheeses prepared with the stearin (the AMF with the highest ratio of long-chain fatty acids) were more resistant to disintegration than the other cheeses, owing to the high melting temperature of that AMF. The Ca-enriched cheeses had faster lipolysis rates than the regular Ca cheeses. Chromatographic analysis of the digestion products showed that Ca interacted with long-chain fatty acids, producing Ca soaps, whereas no interaction with shorter fatty acids was detected. Although higher Ca levels resulted in faster lipolysis rates, driven by the depletion of reaction products as Ca soaps, such insoluble compounds are expected to reduce the bioavailability of fatty acids by hindering their absorption. These effects on lipid digestion and absorption are of interest for the design of food matrices for the controlled release of fat-soluble nutrients or bioactive molecules.
  • Publication
    Restreint
    Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion
    (Elsevier, 2016-01-27) Fang, Xixi; Rioux, Laurie-Eve; Labrie, Steve; Turgeon, Sylvie
    Solid food disintegration in the stomach has recently been linked to food texture, which changes during digestion. This phenomenon is likely to affect the kinetics of protein digestion and therefore associated postprandial metabolic responses. Depending upon the variety, the cheese protein and lipid content as well as the texture can be modulated, illustrating complexity. Five commercial cheeses, covering a range of textural properties, were selected and characterised. Cheese particles were submitted to an in vitro digestion model to study cheese disintegration and protein/peptide release. Cheese disintegration was affected by cheese texture and composition. At the end of gastric digestion, elastic cheeses (mozzarella) were less disintegrated when compared with ripened and soft cheeses with high fat content (Camembert, aged Cheddar). The protein digestion was different amongst cheeses according to different disintegration rates. Cheese structural and textural properties, attributed to processing parameters, can be used to modulate gastro-intestinal digestion of cheese proteins.
  • Publication
    Accès libre
    Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels
    (New York, NY : Elsevier Science Pub. Co., 2017-02-16) Le, Xuan Thang; Rioux, Laurie-Eve; Turgeon, Sylvie
    Protein and polysaccharide mixed systems have been actively studied for at least 50 years as they can be assembled into functional particles or gels. This article reviews the properties of electrostatic gels, a recently discovered particular case of associative protein–polysaccharide mixtures formed through associative electrostatic interaction under appropriate solution conditions (coupled gel). This review highlights the factors influencing gel formation such as protein–polysaccharide ratio, biopolymer structural characteristics, final pH, ionic strength and total solid concentration. For the first time, the functional properties of protein–polysaccharide coupled gels are presented and discussed in relationship to individual protein and polysaccharide hydrogels. One of their outstanding characteristics is their gel water retention. Up to 600 g of water per g of biopolymer may be retained in the electrostatic gel network compared to a protein gel (3–9 g of water per g of protein). Potential applications of the gels are proposed to enable the food and non-food industries to develop new functional products with desirable attributes or new interesting materials to incorporate bioactive molecules.
  • Publication
    Accès libre
    Characterization of syneresis phenomena in stirred acid milk gel using low frequency nuclear magnetic resonance on hydrogen and image analyses
    (Oxford : IRL Press, 2020-04-15) Gilbert, Audrey; Rioux, Laurie-Eve; St-Gelais, Daniel; Turgeon, Sylvie
    Water retention is an important quality attribute for yogurt. Classically, stirred yogurt water retention is investigated using induced syneresis measurement (centrifugation), which does not characterize spontaneous syneresis. Low-frequency nuclear magnetic resonance (1H-LF-NMR) is a non-destructive technique to detect spontaneous syneresis. Experimental yogurt from pasteurized skim milk, and commercial stirred yogurts were analyzed with 1H-LF-NMR. After Laplace's transformation of the signal, hydrogen atoms pools were differentiated according to their mobility. Each hydrogen pool stood for a type of water mobility in the matrices characterized by a relaxation time (T2(i)), and a signal intensity (I2(i)). Yogurt water retention was assessed by induced syneresis and their structure was characterized using microscopy. Low frequency 1H-NMR detected four different water mobility groups in the matrices. Among these, there was a signal from bulk water, and another attributed to the separated serum (spontaneous syneresis). In experimental yogurts, spontaneous syneresis was visible, resulting in induced syneresis higher than 50%. Moreover, induced syneresis and spontaneous syneresis detected by 1H-LF-NMR were similar. In commercial yogurts, bulk water mobility reduced with increasing protein content and protein network density. Induced syneresis and bulk-water mobility correlated only in yogurts without gelatin. In the presence of gelatin, the network was more open, probably favoring bulk water mobility. This study shows that 1H-LF-NMR associated with microscopy image analysis efficiently assesses and describes yogurts water retention and spontaneous syneresis.
  • Publication
    Accès libre
    Acceptability of insect ingredients by innovative student chefs : an exploratory study
    (Amsterdam : Elsevier, 2021-05-08) Dion-Poulin, Alexandra; Turcotte, Mylène; Lee-Blouin, Sophia; Provencher, Véronique; Doyen, Alain; Turgeon, Sylvie; Perreault, Véronique
    Background: In Western societies, the acceptability of entomophagy is low despite the sustainable and nutritional benefits of insects. It is recognized that insect meals incorporated in into familiar foods increases willingness to eat insects. Chefs can offer positive culinary insect-based experiences to their customers which can then contribute to increasing the acceptability of entomophagy by consumers. However, little is known about chefs' perceptions of the use of insect-based ingredients. Objective: The aim of this study was to explore the reasons why innovative student chefs are willing (or not) to incorporate mealworms meals into their dishes. Methodology: Semi-structured interviews were conducted with 7 innovative student chefs at the Institut de tourisme et d'hôtellerie du Québec (ITHQ). Thematic analysis based on a priori Rogers' Diffusion of Innovation Theory was conducted using transcript verbatim. Results: Most participants had a past consumption experience with entomophagy and all of them had a positive attitude toward this practice. The main perceived disadvantages of mealworm meal was the texture (granular and uneven), the odor as well as the low acceptability by consumers. Despite that, student chefs were generally willing to use insect-based ingredients, but they thought that transparency and more opportunities for consumers to try good insect-based dishes are keys to enhancing the acceptability of insect consumption. Conclusion: Understanding perceptions of innovative chefs about the use of insect-based ingredients can help to promote their use in gastronomy and ultimately improve their acceptability by consumers.
  • Publication
    Accès libre
    Quantitative PCR reveals the frequency and distribution of 3 indigenous yeast species across a range of specialty cheeses
    (American Dairy Science Association, 2022-09-14) Lamarche, Andréanne; Lessard, Marie-Hélène; Viel, Catherine; Turgeon, Sylvie; St-Gelais, Daniel; Labrie, Steve
    Indigenous microorganisms are important components of the complex ecosystem of many dairy foods including cheeses, and they are potential contributors to the development of a specific cheese's sensory properties. Among these indigenous microorganisms are the yeasts Cyberlindnera jadinii, Pichia kudriavzevii, and Kazachstania servazzii, which were previously detected using traditional microbiological methods in both raw milk and some artisanal specialty cheeses produced in the province of Québec, Canada. However, their levels across different cheese varieties are unknown. A highly specific and sensitive real-time quantitative PCR assay was developed to quantitate these yeast species in a variety of specialty cheeses (bloomy-rind, washed-rind, and natural-rind cheeses from raw, thermized, and pasteurized milks). The specificity of the quantitative PCR assay was validated, and it showed no cross-amplification with 11 other fungal microorganisms usually found in bloomy-rind and washed-rind cheeses. Cyberlindnera jadinii and P. kudriavzevii were found in the majority of the cheeses analyzed (25 of 29 and 24 of 29 cheeses, respectively) in concentrations up to 104 to 108 gene copies/g in the cheese cores, which are considered oxygen-poor environments, and 101 to 104 gene copies/cm2 in the rind. However, their high abundance was not observed in the same samples. Whereas C. jadinii was present and dominant in all core and rind samples, P. kudriavzevii was mostly present in cheese cores. In contrast, K. servazzii was present in the rinds of only 2 cheeses, in concentrations ranging from 101 to 103 gene copies/cm2, and in 1 cheese core at 105 gene copies/g. Thus, in the ecosystems of specialty cheeses, indigenous yeasts are highly frequent but variable, with certain species selectively present in specific varieties. These results shed light on some indigenous yeasts that establish during the ripening of specialty cheeses.
  • Publication
    Accès libre
    How do smoothing conditions and storage time change syneresis, rheological and microstructural properties of nonfat stirred acid milk gel?
    (Barking, Essex, England : Elsevier Applied Science, 2020-07-16) Guénard Lampron, Valérie; Bosc, Véronique; St-Gelais, Daniel; Villeneuve, Sébastien; Turgeon, Sylvie
    Nonfat acid milk gel, acidified by GDL, was used to simulate microbial fermentation of milk to produce stirred yoghurt. Acid milk gel preparation at laboratory scale included stirring, pumping, smoothing and cooling operations. Two filters (pre-smoothed, 1 mm; smoothed, 500 μm), three smoothing temperatures (13, 22 and 35 °C) and two storage times (1 and 22 days) were studied. Syneresis, microgels size and smoothness of microgels were analysed for pre-smoothed and smoothed gels; viscosity, storage modulus, firmness and total pore area were only analysed for smoothed gel. After 1 and 22 days of storage, pre-smoothed gels developed lower syneresis and smaller microgels than smoothed gels at 22 °C. For smoothed gels, regardless of the smoothing temperature, syneresis, firmness, microgels size and smoothness increased during storage, while total pore area decreased and viscosity remained stable. Viscosity was lower when smoothing was performed at 35 °C and was correlated to rougher microgels.
  • Publication
    Accès libre
    Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an in vitro static digestion model
    (New York, NY : Elsevier Science Pub. Co., 2019-03-26) Guinot, Léa; Rioux, Laurie-Eve; Labrie, Steve; Britten, Michel; Turgeon, Sylvie
    Cheese characteristics, such as composition or textural properties, can impact the matrix degradation rate which could modulate the bioaccessibility of fatty acids during digestion. The aim of this study was to identify texture parameters influencing cheese degradation in a gastrointestinal environment. A static in vitro digestion model has been used on nine commercial cheeses: young and aged cheddar, regular and light cream cheese, parmesan, feta, camembert, mozzarella, and sliced processed cheese. At the end of gastric digestion, camembert and mozzarella presented the lowest matrix disintegration whereas aged cheddar, regular and light cream cheeses showed the highest. For all cheeses, the fatty acid release was fast during the first 30 min of duodenal digestion and slowed down afterwards. A partial least square regression revealed that springiness, cohesiveness, and hardness were negatively correlated to the rate of cheese disintegration during gastric digestion. In addition, textural parameters were not correlated with free fatty acid release. By modulating cheese texture, it could be possible to influence matrix disintegration during gastrointestinal digestion which could have an impact on lipids release.