Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Turgeon, Sylvie

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Turgeon

Prénom

Sylvie

Affiliation

Université Laval. Département des sciences des aliments

ISNI

ORCID

Identifiant Canadiana

ncf10325454

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Disintegration and nutrients release from cheese with different textural properties during in vitro digestion
    (New York : Elsevier, 2016-09-12) Fang, Xixi; Rioux, Laurie-Eve; Labrie, Steve; Turgeon, Sylvie
    Recent results showed that solid food disintegration in the stomach may be affected by food texture which was demonstrated to change during digestion. Cheese is complex as, depending on the variety, its composition and texture can be modulated. Cheddar, light Cheddar, Mozzarella and light Mozzarella cheese particles were digested in vitro. Cheese disintegration and nutrients release were studied throughout the oral, gastric and duodenal digestion steps in presence or absence of enzymes. Cheese disintegration was significantly affected by the enzymatic treatment (with or without enzymes). The addition of enzymes allowed to reach 72% of cheese disintegration at the end of the duodenal digestion while it has attained 30% when no enzymes were added. Cheddar cheese disintegration was the highest among cheeses. This phenomenon was related to its initial higher fat content which resulted in a higher fat release during digestion. The disintegration at the end of each digestion step was also correlated to cheese composition (proteolysis and fat) and to textural parameters (hardness, resilience, adhesiveness and chewiness). Light Cheddar and Mozzarella exhibited similar disintegration and nutrients release at the end of the digestion due to a relatively small fat reduction (6%) which had limited effect on cheese texture. This study provides quantitative evidence regarding the impact of cheese textural changes during digestion on cheese disintegration and macronutrients release which may further affect nutrients anabolic response and some physiological functions.
  • PublicationRestreint
    Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion
    (Elsevier, 2016-01-27) Fang, Xixi; Rioux, Laurie-Eve; Labrie, Steve; Turgeon, Sylvie
    Solid food disintegration in the stomach has recently been linked to food texture, which changes during digestion. This phenomenon is likely to affect the kinetics of protein digestion and therefore associated postprandial metabolic responses. Depending upon the variety, the cheese protein and lipid content as well as the texture can be modulated, illustrating complexity. Five commercial cheeses, covering a range of textural properties, were selected and characterised. Cheese particles were submitted to an in vitro digestion model to study cheese disintegration and protein/peptide release. Cheese disintegration was affected by cheese texture and composition. At the end of gastric digestion, elastic cheeses (mozzarella) were less disintegrated when compared with ripened and soft cheeses with high fat content (Camembert, aged Cheddar). The protein digestion was different amongst cheeses according to different disintegration rates. Cheese structural and textural properties, attributed to processing parameters, can be used to modulate gastro-intestinal digestion of cheese proteins.