Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Turgeon, Sylvie

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Turgeon

Prénom

Sylvie

Affiliation

Université Laval. Département des sciences des aliments

ISNI

ORCID

Identifiant Canadiana

ncf10325454

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Disintegration and nutrients release from cheese with different textural properties during in vitro digestion
    (New York : Elsevier, 2016-09-12) Fang, Xixi; Rioux, Laurie-Eve; Labrie, Steve; Turgeon, Sylvie
    Recent results showed that solid food disintegration in the stomach may be affected by food texture which was demonstrated to change during digestion. Cheese is complex as, depending on the variety, its composition and texture can be modulated. Cheddar, light Cheddar, Mozzarella and light Mozzarella cheese particles were digested in vitro. Cheese disintegration and nutrients release were studied throughout the oral, gastric and duodenal digestion steps in presence or absence of enzymes. Cheese disintegration was significantly affected by the enzymatic treatment (with or without enzymes). The addition of enzymes allowed to reach 72% of cheese disintegration at the end of the duodenal digestion while it has attained 30% when no enzymes were added. Cheddar cheese disintegration was the highest among cheeses. This phenomenon was related to its initial higher fat content which resulted in a higher fat release during digestion. The disintegration at the end of each digestion step was also correlated to cheese composition (proteolysis and fat) and to textural parameters (hardness, resilience, adhesiveness and chewiness). Light Cheddar and Mozzarella exhibited similar disintegration and nutrients release at the end of the digestion due to a relatively small fat reduction (6%) which had limited effect on cheese texture. This study provides quantitative evidence regarding the impact of cheese textural changes during digestion on cheese disintegration and macronutrients release which may further affect nutrients anabolic response and some physiological functions.
  • PublicationAccès libre
    Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an in vitro static digestion model
    (New York, NY : Elsevier Science Pub. Co., 2019-03-26) Guinot, Léa; Rioux, Laurie-Eve; Labrie, Steve; Britten, Michel; Turgeon, Sylvie
    Cheese characteristics, such as composition or textural properties, can impact the matrix degradation rate which could modulate the bioaccessibility of fatty acids during digestion. The aim of this study was to identify texture parameters influencing cheese degradation in a gastrointestinal environment. A static in vitro digestion model has been used on nine commercial cheeses: young and aged cheddar, regular and light cream cheese, parmesan, feta, camembert, mozzarella, and sliced processed cheese. At the end of gastric digestion, camembert and mozzarella presented the lowest matrix disintegration whereas aged cheddar, regular and light cream cheeses showed the highest. For all cheeses, the fatty acid release was fast during the first 30 min of duodenal digestion and slowed down afterwards. A partial least square regression revealed that springiness, cohesiveness, and hardness were negatively correlated to the rate of cheese disintegration during gastric digestion. In addition, textural parameters were not correlated with free fatty acid release. By modulating cheese texture, it could be possible to influence matrix disintegration during gastrointestinal digestion which could have an impact on lipids release.