Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Pérusse, Louis

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Pérusse

Prénom

Louis

Affiliation

Université Laval. Département de kinésiologie

ISNI

ORCID

Identifiant Canadiana

ncf10139306

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 16
  • PublicationAccès libre
    The challenge of stratifying obesity : attempts in the Quebec family study
    (Frontiers Research Foundation, 2019-10-10) Guénard, Frédéric; Bouchard, Claude; Toro Martin, Juan de; Pérusse, Louis; Tremblay, Angelo; Vohl, Marie-Claude
    Background and aims: Obesity is a major health problem worldwide. Given the heterogeneous obesity phenotype, an optimal obesity stratification would improve clinical management. Since obesity has a strong genetic component, we aimed to develop a polygenic risk score (PRS) to stratify obesity according to the genetic background of the individuals. Methods: A total of 231 single nucleotide polymorphisms (SNP) significantly associated to body mass index (BMI) from 21 genome-wide association studies were genotyped or imputed in 881 subjects from the Quebec Family Study (QFS). The population was randomly split into discovery (80%; n = 704) and validation (20%; n = 177) samples with similar obesity (BMI ≥ 30) prevalence (27.8% and 28.2%, respectively). Family-based associations with obesity were tested for every SNP in the discovery sample and a weighed and continuous PRS231 was constructed. Generalized linear mixed effects models were used to test the association of PRS231 with obesity in the QFS discovery sample and validated in the QFS replication sample. Furthermore, the Fatty Acid Sensor (FAS) Study (n = 141; 27.7% obesity prevalence) was used as an independent sample to replicate the results. Results: The linear trend test demonstrated a significant association of PRS231 with obesity in the QFS discovery sample (ORtrend = 1.19 [95% CI, 1.14-1.24]; P = 2.0x10-16). We also found that the obesity prevalence was significantly greater in the higher PRS231 quintiles compared to the lowest quintile. Significant and consistent results were obtained in the QFS validation sample for both the linear trend test (ORtrend = 1.16 [95% CI, 1.07-1.26]; P = 6.7x10-4), and obesity prevalence across quintiles. These results were partially replicated in the FAS sample (ORtrend = 1.12 [95% CI, 1.02-1.24]; P = 2.2x10-2). PRS231 explained 7.5%, 3.2%, and 1.2% of BMI variance in QFS discovery, QFS validation, and FAS samples, respectively. Conclusions: These results revealed that genetic background in the form of a 231 BMI-associated PRS has a significant impact on obesity, but a limited potential to accurately stratify it. Further studies are encouraged on larger populations.
  • PublicationAccès libre
    Methylation quantitative trait loci within the TOMM20 gene are associated with metabolic syndrome-related lipid alterations in severely obese subjects
    (BioMed Central Ltd., 2016-07-29) Toro Martin, Juan de; Guénard, Frédéric; Pérusse, Louis; Hould, Frédéric-Simon; Marceau, Picard; Vohl, Marie-Claude; Deshaies, Yves; Lebel, Stéfane; Tchernof, André
    Background : The TOMM20 gene was previously identified as differentially expressed and methylated between severely obese subjects with and without metabolic syndrome (MS). Since metabolic complications do not affect all obese patients to the same extent, the aim of this study was to identify methylation quantitative trait loci (meQTL) potentially associated with MS-related complications within the TOMM20 locus. Methods : Methylation profiling, SNP genotyping and meQTL association tests (general linear models) were performed in a population of 48 severely obese subjects. Genotyping was extended to a larger population of 1720 severely obese subjects with or without MS, where genotype- and diplotype-based association tests were assessed by logistic regression. In silico analyses were performed using TRAP. Results : Four SNPs were identified as significant meQTLs for the differentially methylated site cg16490124. Individuals carrying rare alleles of rs4567344 (A > G) (P = 4.9 × 10−2) and rs11301 (T > C) (P = 5.9 × 10−3) showed decreased methylation levels at this site, whereas those carrying rare alleles of rs4551650 (T > C) (P = 3.5 × 10−15) and rs17523127 (C > G) (P = 3.5 × 10−15) exhibited a significant increase in methylation. rs4567344 and rs11301 were associated with increased susceptibility to exhibit high plasma triglycerides (TG ≥ 1.69 mmol/L), while rare alleles of rs4551650 and rs17523127 were significantly more represented in the low plasma total-C group (total-C ≤ 6.2 mmol/L). Haplotype reconstruction with the four meQTLs (rs4567344, rs11301, rs4551650, rs17523127) led to the identification of ten different diplotypes, with H1/H2 (GCGG/ACGG) exhibiting a nearly absence of methylation at cg16490124, and showing the highest risk of elevated plasma TG levels [OR = 2.03 (1.59–3.59)], a novel association with elevated LDL-cholesterol [OR = 1.86 (1.06–3.27)] and the complete inversion of the protective effect on total-C levels [OR = 2.03 (1.59–3.59)], especially in men. In silico analyses revealed that rs17523127 overlapped the CpG site cg16490124 and encompassed the core binding sites of the transcription factors Egr 1, 2 and 3, located within the TOMM20 promoter region. Conclusion : This study demonstrates that TOMM20 SNPs associated with MS-related lipid alterations are meQTLs potentially exerting their action through a CpG methylation-dependent effect. The strength of the diplotype-based associations may denote a novel meQTL additive action and point to this locus as particularly relevant in the inter-individual variability observed in the metabolic profiles of obese subjects.
  • PublicationRestreint
    Long-term adiposity changes are related to a glucocorticoid receptor polymorphism in young females
    (Oxford Academic, 2003-07-01) Drapeau, Vicky; Bouchard, Claude; Pérusse, Louis; Tremblay, Angelo; Bouchard, Luigi; Després, Jean-Pierre
    Male and female preadolescents and adolescents who participated in phase 1 of the Québec Family Study, and who were retested about 12 yr later, were recruited and subdivided on the basis of a genetic variant within the intron 2 of the glucocorticoid receptor (GRL IVS2-BclI). The increase in sc adiposity over the 12-yr follow-up period in the 4.5/2.3 genotype female subgroup was more than twice that observed in the 4.5/4.5 and the 2.3/2.3 genotype subgroups (P < 0.01). The statistical significance of this difference was essentially unchanged after adjusting for changes, over time, in percent dietary energy as fat, alcohol consumption, and participation in vigorous physical activity. In male subjects, the same trend was found, but it did not reach statistical significance. In conclusion, this study suggests that a significant interaction effect exists between variation in the glucocorticoid receptor gene and body fat gain in female subjects experiencing the transition between adolescence and adulthood. Further research will, however, be necessary to characterize the lifestyle factors promoting fat accumulation, over time, among genetically susceptible individuals.
  • PublicationRestreint
    The PPAR-gamma P12A polymorphism modulates the relation between dietary fat intake and components of the metabolic syndrome : results from the Quebec Family Study
    (Blackwell-synergy, 2003-03-10) Pérusse, Louis; Vohl, Marie-Claude; Després, Jean-Pierre; Robitaille, Julie
    The metabolic syndrome is a complex disorder characterized by an atherogenic dyslipidemia resulting from the interaction between genetic and nutritional factors. The objective of this study was to examine in a cohort of 720 adults participating in the Québec Family Study (QFS) whether dietary fat interacts with the P12A polymorphism in the gene encoding the peroxisome proliferator‐activated receptor‐gamma (PPAR‐γ), a nuclear factor that regulates lipid and glucose homeostasis. Carriers of the A12 allele had a higher body mass index (BMI), waist circumference, fat mass as well as subcutaneous adipose tissue and visceral adipose tissue (VAT) areas both assessed by computed tomography than P12/P12 homozygotes. Total fat and saturated fat intakes estimated from a 3‐day food record were significantly correlated with several components of the metabolic syndrome in P12/P12 homozygotes. None of these expected associations were observed among carriers of the A12 allele. Furthermore, in a model including the PPAR‐γ P12A polymorphism, fat intake, age and gender, PPAR‐γ P12A and its interaction with fat intake were associated with BMI and waist circumference. Similar results were obtained when saturated fat intake replaced total fat intake into the model. When the two genotype groups were further classified into quartiles of total fat or saturated fat intake and their characteristics compared, an increase in fat intake was associated with an increase in waist circumference in P12/P12 homozygotes but not in A12 carriers. There was no difference in the waist circumference in carriers of the A12 allele whether the fat or the saturated fat intake was high or low. These results suggest that the PPAR‐γ P12A polymorphism can modulate the association between dietary fat intake and components of the metabolic syndrome.
  • PublicationAccès libre
    A GWAS follow-up of obesity-related SNPs in SYPL2 reveals sexspecific association with hip circumference
    (John Wiley & Sons Inc., 2016-09-20) Guénard, Frédéric; Biron, Simon; Toro Martin, Juan de; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Deshaies, Yves; Marceau, Simon; Tchernof, André
    Objective A novel single-nucleotide polymorphism (SNP) associated with morbid obesity was recently identified by exome sequencing. The purpose of this study was to follow up this low-frequency coding SNP located within the SYPL2 locus and associated with body mass index in order to reveal novel associations with obesity-related traits. Methods The body mass index-associated SNP (rs62623713 A>G [chr1:109476817/hg19]) and two tagging SNPs within the SYPL2 locus, rs9661614 T>C (chr1:109479215) and rs485660 G>A (chr1:109480810), were genotyped in the obesity (n = 3,017) and the infogene (n = 676) cohorts, which were further combined, leading to a larger cohort of 3,693 individuals. Association testing was performed by general linear models in the obesity cohort and validated by joint analysis in the combined cohort. Results rs9661614 and rs485660 were significantly associated with hip circumference (HC) in the obesity cohort, with heterozygotes exhibiting a significantly lower HC. These results were validated by joint analysis for rs9661614 (false discovery rate [FDR]-corrected P = 7.5 × 10−4) and, to a lesser extent, for rs485660 (FDR corrected P = 3.9 × 10−2). The association with HC remained significant for rs9661614 when tested independently in women (FDR-corrected P = 1.7 × 10−2), but not for rs485660 (FDR-corrected P = 0.2). Both associations were absent in men. Conclusions This study reveals strong evidence for a novel association between rs9661614 (T>C) and HC in women, which likely reflects a preferential association of SYPL2 to a gynoid profile of fat distribution. The study findings support a clinical significance of SYPL2 worth considering when assessing risk factors associated with obesity.
  • PublicationRestreint
    GAD2 gene sequence variations are associated with eating behaviors and weight gain in women from the Quebec family study
    (Pergamon Press, 2009-08-15) Drapeau, Vicky; Choquette, Anne.; Bouchard, Claude; Pérusse, Louis; Tremblay, Angelo; Lemieux, Simone; Vohl, Marie-Claude
    The glutamate decarboxylase 2 (GAD2) gene encodes for the glutamic acid decarboxylase enzyme (GAD65), which is implicated in the formation of the gamma-aminobutyric acid (GABA), a neurotransmitter involved in the regulation of food intake. The objective of the present study was to test for association between GAD2 single-nucleotide polymorphisms (SNPs) and eating behaviors, dietary intake and obesity in subjects (n=873) from the Quebec Family Study (QFS). Energy and macronutrient intakes were measured using a 3-day dietary record and eating behaviors were assessed using the Three-Factor Eating Questionnaire (TFEQ). Six SNPs capturing about 90% of GAD2 gene variability were genotyped and tested for association with age- and BMI- adjusted phenotypes. No evidence of association was found in men. In women, a SNP (rs992990; c.61450 C>A) was associated with disinhibition (p=0.028), emotional susceptibility to disinhibition (p=0.0005) and susceptibility to hunger (p=0.028). Another SNP (rs7908975; c.8473A>C) was associated with carbohydrate (p=0.021) and lipid (p=0.021) intakes, disinhibition (p=0.011) and two of its subscales (emotional and situational susceptibility) as well as with avoidance of fattening foods (p=0.036). Six-year weight gain was two times higher in women carrying the variants associated with eating behaviors: 4.2kg (vs 2.1kg in non-carriers) in A-allele carriers of c.61450 C>A (p=0.038) and 4.9kg (vs 2.5kg in non-carriers) in C-allele carriers of c. 8473 A>C (p=0.013). The results suggest a role for the GAD2 gene in determining food intake, eating behaviors and weight gain over time in women.
  • PublicationAccès libre
    Association between metabolite profiles, metabolic syndrome and obesity status
    (MDPI, 2016-05-27) Allam-Ndoul, Bénédicte; Guénard, Frédéric; Cormier, Hubert; Garneau, Véronique; Pérusse, Louis; Barbier, Olivier; Vohl, Marie-Claude
    Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW) and overweight/obese (Ov/Ob) individuals, with or without metabolic syndrome (MetS). Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1’s (long chain glycerophospholipids) metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C) and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C) among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine) was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3’s (medium chain acylcarnitines) metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.
  • PublicationRestreint
    Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction
    (Oxford University Press, 2009-11-25) Pérusse, Louis; Rabasa-Lhoret, Rémi; Vohl, Marie-Claude; Faraj, May; Bouchard, Luigi; Lavoie, Marie-Ève; Mill, Jonathan
    Background: Caloric restriction is recommended for the treatment of obesity, but it is generally characterized by large interindividual variability in responses. The factors affecting the magnitude of weight loss remain poorly understood. Epigenetic factors (ie, heritable but reversible changes to genomic function that regulate gene expression independently of DNA sequence) may explain some of the interindividual variability seen in weight-loss responses. Objective: The objective was to determine whether epigenetics and gene expression changes may play a role in weight-loss responsiveness. Design: Overweight/obese postmenopausal women were recruited for a standard 6-mo caloric restriction intervention. Abdominal subcutaneous adipose tissue biopsy samples were collected before (n = 14) and after (n = 14) intervention, and the epigenomic and transcriptomic profiles of the high and low responders to dieting, on the basis of changes in percentage body fat, were compared by using microarray analysis. Results: Significant DNA methylation differences at 35 loci were found between the high and low responders before dieting, with 3 regions showing differential methylation after intervention. Some of these regions contained genes known to be involved in weight control and insulin secretion, whereas others were localized in known imprinted genomic regions. Differences in gene expression profiles were observed only after dieting, with 644 genes being differentially expressed between the 2 groups. These included genes likely to be involved in metabolic pathways related to angiogenesis and cerebellar long-term depression. Conclusions: These data show that both DNA methylation and gene expression are responsive to caloric restriction and provide new insights about the molecular pathways involved in body weight loss as well as methylation regulation during adulthood.
  • PublicationAccès libre
    The rare allele of DGKZ SNP rs10838599 is associated with variability in HDL-cholesterol levels among severely obese patients
    (Open Access Text Pvt. Ltd, 2016-05-12) Guénard, Frédéric; Pérusse, Louis; Hould, Frédéric-Simon; Deshaies, Yves; Marceau, Picard; Bégin, Stéphanie; Vohl, Marie-Claude; Lebel, Stéfane; Tchernof, André
    Introduction: Diacylglycerol kinase-zeta, one of the ten isoforms of DGKs expressed in mammals is an important enzyme of lipid metabolism. It catalyzes the interconversion of diacylglycerol and phosphatidic acid, two major second messengers. Its gene DGKZ has been previously identified as being overexpressed and undermethylated in visceral adipose tissue of patients with (MetS+) versus without (MetS-) the metabolic syndrome (MetS). Objective: The aim of this study was to investigate the associations between DGKZ gene polymorphisms (SNPs) and phenotypes related to MetS (BMI, waist girth, CRP, fasting glucose, lipid profile (triglycerides, total-cholesterol, LDL-cholesterol and HDL-cholesterol (HDL-C)), resting systolic and diastolic blood pressures). Methods: The study sample included 1752 severely obese participants who underwent bariatric surgery. Associations between the five selected tSNPs of DGKZ and features of the MetS were tested. The effects of these SNPs on DGKZ methylation and expression levels were tested in subgroups of 32 and 14 obese subjects, respectively. Correlations between methylation and expression levels were also computed. Results: Homozygotes for the rare allele of rs10838599 displayed higher plasma HDL-C concentrations compared to the other genotype groups (p=0.03). For gene methylation, only a trend with the cg05412031 CpG site (p=0.09) was found for the single significantly phenotype-associated SNP. There was no significant correlation between DGKZ methylation at cg05412031 and expression levels. Conclusion: These results suggest that DGKZ SNP rs10838599 modulates plasma HDL-C levels thereby its gene contributes to the inter-individual variability observed in the cardiometabolic risk profile of patients with severe obesity.
  • PublicationAccès libre
    Impact of NMT1 gene polymorphisms on features of the metabolic syndrome among severely obese patients
    (Openventio Publishers, 2015-11-24) Guénard, Frédéric; Biron, Simon; Biertho, Laurent; Deshaies, Yves; Pérusse, Louis; Lescelleur, Odette; Bégin, Stéphanie; Vohl, Marie-Claude; Tchernof, André; Marceau, Simon
    Introduction: N-myristoyltransferase (NMT) is implicated in myristoylation, required for biological activities of several proteins. Its gene N-myristoyltransferase 1 (NMT1) has been found to be overexpressed and hypermethylated in Visceral Adipose Tissue (VAT) of severely obese individuals with Metabolic Syndrome (MetS+) versus without (MetS-). Objective: The aim of this study was to verify the associations between NMT1 gene polymorphisms Single Nucleotide Polymorphisms (SNPs) and metabolic complications among obese subjects. Methods: Associations between SNPs and determinants of MetS were tested with 1752 obese participants undergoing a bariatric surgery. The effect of selected SNPs on methylation, and correlation with expression levels of NMT1 were verified in subgroups. Results: Rs2239921 was significantly associated with systolic (p=0.03) and diastolic (p<0.0001) blood pressures. Rs2239923 was associated with plasma High Density Lipoprotein-Cholesterol or HDL-Cholesterol (HDL-C) levels (p=0.05), while rs2269746 was associated with Low Density Lipoprotein-Cholesterol or LDL-Cholesterol (LDL-C) (p=0.006) and Total-Cholesterol (Total-C) levels (p=0.004). Rs1005136 (p=0.03), rs8066395 (p=0.03) or rs2157840 (p=0.04) were associated with plasma concentrations of C-Reactive Protein (CRP). Phenotype-associated SNPs were associated with NMT1 methylation levels of six CpG sites. NMT1 methylation levels of one CpG site, cg10755730, correlated with gene expression levels (r=0.57; p=0.04). Conclusion: These results suggest that the presence of NMT1 SNPs is associated with altered plasma lipid levels as well as with increased inflammation markers and blood pressure among severely obese patients.