Personne :
Laroche, Gaétan

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Nom de famille
Université Laval. Département de génie des mines, de la métallurgie et des matériaux
Identifiant Canadiana

Résultats de recherche

Voici les éléments 1 - 10 sur 50
  • Publication
    Accès libre
    A fluorophore-tagged RGD peptide to control endothelial cell adhesion to micropatterned surfaces
    (ScienceDirect, 2013-10-31) Hoesli, Corinne A.; Duchesne, Carl; Juneau, Pierre-Marc; Laroche, Gaétan; Chevallier, Pascale
    The long-term patency rates of vascular grafts and stents are limited by the lack of surface endothelialisation of the implanted materials. We have previously reported that GRGDS and WQPPRARI peptide micropatterns increase the endothelialisation of prosthetic materials in vitro. To investigate the mechanisms by which the peptide micropatterns affect endothelial cell adhesion and proliferation, a TAMRA fluorophore-tagged RGD peptide was designed. Live cell imaging revealed that the micropatterned surfaces led to directional cell spreading dependent on the location of the RGD-TAMRA spots. Focal adhesions formed within 3 h on the micropatterned surfaces near RGD-TAMRA spot edges, as expected for cell regions experiencing high tension. Similar levels of focal adhesion kinase phosphorylation were observed after 3 h on the micropatterned surfaces and on surfaces treated with RGD-TAMRA alone, suggesting that partial RGD surface coverage is sufficient to elicit integrin signaling. Lastly, endothelial cell expansion was achieved in serum-free conditions on gelatin-coated, RGD-TAMRA treated or micropatterned surfaces. These results show that these peptide micropatterns mainly impacted cell adhesion kinetics rather than cell proliferation. This insight will be useful for the optimization of micropatterning strategies to improve vascular biomaterials.
  • Publication
    Accès libre
    Interplay of geometric cues and RGD/BMP-2 crosstalk in directing stem cell fate
    (American Chemical Society, 2017-08-21) Bilem, Ibrahim; Laroche, Gaétan; Plawinski, Laurent; Chevallier, Pascale; Sone, E. (Eli); Durrieu, Marie-Christine
    Within the native microenvironment, extracellular matrix (ECM) components are thought to display a complex and heterogeneous distribution, spanning several length scales. Herein, the objective is to mimic, in vitro, the hierarchical organization of proteins and growth factors as well as their crosstalk. Photolithography technique was used to adjacently pattern geometrically defined regions of RGD and BMP-2 mimetic peptides onto glass substrates. These ECM-derived ligands are known to jointly regulate mesenchymal stem cells (MSCs) osteogenic differentiation. By manipulating the spatial distribution of dually grafted peptides, the extent of human MSCs osteogenic differentiation was significantly affected, depending on the shape of peptide micropatterns. Our data highlight the existence of a strong interplay between geometric cues and biochemical signals. Such in vitro systems provide a valuable tool to investigate mechanisms by which multiple ECM cues overlap to regulate stem cell fate, thereby contributing to the design of bioinspired biomaterials for bone tissue engineering applications.
  • Publication
    Accès libre
    Evaluation of an air spinning process to produce tailored biosynthetic nanofiber scaffolds
    (Elsevier Science, 2013-11-14) Abadie, Pierre; Laroche, Gaétan; Dieval, Florence; Sabbatier, Gad; Durand, Bernard
    We optimised the working parameters of an innovative air spinning device to produce nanofibrous polymer scaffolds for tissue engineering applications. Scanning electron microscopy was performed on the fibre scaffolds which were then used to identify various scaffold morphologies based on the ratio of surface occupied by the polymer fibres on that covered by the entire polymer scaffold assembly. Scaffolds were then produced with the spinning experimental parameters, resulting in 90% of fibres in the overall polymer construct, and were subsequently used to perform a multiple linear regression analysis to highlight the relationship between nanofibre diameter and the air spinning parameters. Polymer solution concentration was deemed as the most significant parameter to control fibre diameter during the spinning process, despite interactions between experimental parameters. Based on these findings, viscosity measurements were performed to clarify the effect of the polymer solution property on scaffold morphology.
  • Publication
    Accès libre
    Characterization of argon dielectric barrier discharges applied to ethyl lactate plasma polymerization
    (Institute of Physics Publishing Ltd, 2017-11-03) Laroche, Gaétan; Desjardins, Edouard; Naudé, Nicolas; Meichelboeck, Maximilian; Laurent, Morgane; Stafford, Luc; Gherardi, Nicolas
    The influence of the input voltage frequency (35 and 150 kHz), interelectrode gap (1 and 2 mm) and precursor concentration (250, 350, and 450 ppm) on the electron temperature (Te), number density of metastable Ar atoms (n(Arm)), and discharge current density (proportional to the electron density ne) is studied in an argon-ethyl lactate dielectric barrier discharge (DBD). An argon-ammonia Penning mixture is also considered as reference. These results are correlated to the chemistry (XPS, IR) and topography (AFM) of the ethyl-lactate-based plasma polymer coatings. Low Te values from 0.3 to 0.5 eV were obtained for all discharges. This observation, in addition to resemblances with the Ar–NH3 mixture, suggested that the ionization kinetics of ethyl lactate-based discharges is driven by Penning reactions. Among the investigated parameters, the dissipated power obtained through changes of the excitation frequency had the largest impact on both the coatings properties and the discharge behavior.
  • Publication
    Accès libre
    Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid : a first step toward the immobilization of bioactive molecules
    (Elsevier, 2020-02-08) Laroche, Gaétan; Rodríguez Durán, Iván; Vanslambrouck, Stéphanie; Chevallier, Pascale
    The use of polylactic acid (PLA) has attracted growing interest, particularly in recent years, for biomedical applications because of its mechanical properties, biocompatibility, and biodegradability. Despite this, features such as surface hydrophobicity and the absence of suitable functional groups for covalent immobilization of bioactive molecules, make it challenging to endow PLA-based medical devices with additional features and thus broaden their range of applicability. In the present study, we demonstrate the suitability of atmospheric pressure dielectric barrier discharges operating in the Townsend regime as a promising alternative to other surface treatments, such as diazonium and alkali hydrolytic treatments, for carboxyl functionalization of PLA. Chemical changes in PLA surfaces are evaluated by contact angle measurements and by X-ray photoelectron spectroscopy while physical changes are investigated by scanning electron microscopy and atomic force microscopy. The amount of carboxyl groups generated on PLA surfaces is assessed by toluidine blue O assay and substantiated by grafting, through carboxyl groups, a fluorescent probe containing amino functionalities. All of the surface treatments have proven to be very effective in generating carboxylic groups on the PLA surface. Nevertheless, plasma treatment is shown to not degrade the PLA surface, in sharp contrast with diazonium and alkali hydrolytic treatments.
  • Publication
    Accès libre
    Correlation between the plasma characteristics and the surface ‎chemistry of plasma-treated polymers through partial least ‎squares analysis
    (ACS Publications, 2013-12-06) Turgeon, Stéphane; Duchesne, Carl; Ghasemzadeh-Barvarz, Massoud; Laroche, Gaétan; Mavadat, Maryam
    We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.
  • Publication
    Accès libre
    RGD and BMP-2 mimetic peptides crosstalk enhances osteogenic commitment of human bone marrow stem cells
    (Elsevier, 2016-03-18) Bilem, Ibrahim; Laroche, Gaétan; Plawinski, Laurent; Chevallier, Pascale; Stone, E.; Durrieu, Marie-Christine
    Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate combinatorial effects of RGD and BMP-2 mimetic peptides on the osteogenic commitment of hBMSCs, without supplementing the media with pro-osteogenic factors. The RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while the BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage.
  • Publication
    Accès libre
    Design, degradation mechanism and long-term cytotoxicity of poly(L-lactide) and poly(lactide-co-ε-caprolactone) terpolymer film and air-spun nanofiber scaffold
    (Wiley Online Library, 2015-06-08) Laroche, Gaétan; Larrañaga, Aitor; Guay-Bégin, Andrée-Anne; Sabbatier, Gad; Fernandez, Jorge; Diéval, Florence; Durand, Bernard; Sarasua, Jose-Ramon
    Degradable nanofiber scaffold is known to provide a suitable, versatile and temporary structure for tissue regeneration. However, synthetic nanofiber scaffold must be properly designed to display appropriate tissue response during the degradation process. In this context, this publication focuses on the design of a finely-tuned poly(lactide-co-e-caprolactone) terpolymer (PLCL) that may be appropriate for vascular biomaterials applications and its comparison with well-known semi-crystalline poly(L-lactide) (PLLA). The degradation mechanism of polymer film and nanofiber scaffold and endothelial cells behavior cultured with degradation products is elucidated. The results highlight benefits of using PLCL terpolymer as vascular biomaterial compared to PLLA.
  • Publication
    Accès libre
    Human saphenous vein endothelial cell adhesion and expansion on micropatterned polytetrafluoroethylene
    (Wiley, 2012-08-31) Boivin, Marie-Claude; Laroche, Gaétan; Hoesli, Corinne A.; Lagueux, Jean; Bareille, Reine; Rémy-Zolghadri, Murielle; Chevallier, Pascale; Bordenave, Laurence; Durrieu, Marie-Christine
    Intimal hyperplasia and thrombosis are responsible for the poor patency rates of small-diameter vascular grafts. These complications could be avoided by a rapid and strong adhesion of endothelial cells to the prosthetic surfaces, which typically consist of expanded polytetrafluoroethylene (PTFE) for small-diameter vessels. We have previously described two peptide micropatterning strategies that increase the endothelialization rates of PTFE. The micropatterns were generated either by inkjet printing 300 μm squares or by spraying 10.1 ± 0.1 μm diameter droplets of the CGRGDS cell adhesion peptide, while the remaining surface was functionalized using the CWQPPRARI cell migration peptide. We now directly compare these two micropatterning strategies and examine the effect of hydrodynamic stress on human saphenous vein endothelial cells grown on the patterned surfaces. No significant differences in cell adhesion were observed between the two micropatterning methods. When compared to unpatterned surfaces treated with a uniform mixture of the two peptides, the cell expansion was significantly higher on sprayed or printed surfaces after 9 days of static cell culture. In addition, after 6 h of exposure to hydrodynamic stress, the cell retention and cell cytoskeleton reorganization on the patterned surfaces was improved when compared to untreated or random treated surfaces. These results indicate that micropatterned surfaces lead to improved rates of PTFE endothelialization with higher resistance to hydrodynamic stress.
  • Publication
    Accès libre
    Directing hMSCs fate through geometrical cues and mimetics peptides
    (John Wiley & Sons, 2019-10-08) Padiolleau, Laurence; Laroche, Gaétan
    The native microenvironment of mesenchymal stem cells (hMSCs)—the extracellular matrix (ECM), is a complex and heterogenous environment structured at different scales. The present study aims at mimicking the hierarchical microorganization of proteins or growth factors within the ECM using the photolithography technique. Polyethylene terephthalate substrates were used as a model material to geometrically defined regions of RGD + BMP‐2 or RDG + OGP mimetic peptides. These ECM‐derived ligands are under research for regulation of mesenchymal stem cells osteogenic differentiation in a synergic manner. The hMSCs osteogenic differentiation was significantly affected by the spatial distribution of dually grafted peptides on surfaces, and hMSCs cells reacted differently according to the shape and size of peptide micropatterns. Our study demonstrates the presence of a strong interplay between peptide geometric cues and stem cell differentiation toward the osteoblastic lineage. These tethered surfaces provide valuable tools to investigate stem cell fate mechanisms regulated by multiple ECM cues, thereby contributing to the design of new biomaterials and improving hMSCs differentiation cues.