Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Provost, Patrick

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Provost

Prénom

Patrick

Affiliation

Université Laval. Département de microbiologie-infectiologie et d'immunologie

ISNI

0000000351395383

ORCID

Identifiant Canadiana

ncf13680696

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 44
  • PublicationAccès libre
    The repertoire and features of human platelet microRNAs
    (Public Library of Science, 2012-12-04) Provost, Patrick; Plé, Hélène; Benham, Ashley; Landry, Patricia; Coarfa, Cristian; Gunaratne, Preethi H.
    Playing a central role in the maintenance of hemostasis as well as in thrombotic disorders, platelets contain a relatively diverse messenger RNA (mRNA) transcriptome as well as functional mRNA-regulatory microRNAs, suggesting that platelet mRNAs may be regulated by microRNAs. Here, we elucidated the complete repertoire and features of human platelet microRNAs by high-throughput sequencing. More than 492 different mature microRNAs were detected in human platelets, whereas the list of known human microRNAs was expanded further by the discovery of 40 novel microRNA sequences. As in nucleated cells, platelet microRNAs bear signs of post-transcriptional modifications, mainly terminal adenylation and uridylation. In vitro enzymatic assays demonstrated the ability of human platelets to uridylate microRNAs, which correlated with the presence of the uridyltransferase enzyme TUT4. We also detected numerous microRNA isoforms (isomiRs) resulting from imprecise Drosha and/or Dicer processing, in some cases more frequently than the reference microRNA sequence, including 5′ shifted isomiRs with redirected mRNA targeting abilities. This study unveils the existence of a relatively diverse and complex microRNA repertoire in human platelets, and represents a mandatory step towards elucidating the intraplatelet and extraplatelet role, function and importance of platelet microRNAs.
  • PublicationRestreint
    Alteration of the platelet transcriptome in chronic kidney disease
    (2012-10-01) Corduan, Aurélie; Maltais, Manon; Rousseau, Guy; Provost, Patrick; Plé, Hélène; Madore, François
    Bleeding and thrombotic disorders are major complications affecting patients with chronic kidney disease (CKD). Exposure of circulating platelets to uraemic toxins and contact with artificial surfaces during dialysis induce platelet abnormalities and alter the platelet proteome. We hypothesised that these changes may be subsequent to changes in the composition and/or regulation of the platelet transcriptome. In this study, we investigated the circulating platelets of 10 CKD patients (i.e. five chronic haemodialysis patients and five stage 4 CKD uraemic patients) and five age- and sex-matched healthy subjects. We observed an alteration of the platelet messenger RNA (mRNA) and microRNA transcriptome in CKD patients. Impaired in uraemic platelets, the levels of some mRNAs and of most microRNAs appeared to be corrected by dialysis, which is consistent with a beneficial effect of dialysis and a mRNA regulatory role of platelet microRNAs. Reduced in platelets of uraemic patients, phosphatidylcholine transfer protein (PCTP) and WD repeat-containing protein 1 (WDR1) were found to be regulated by microRNAs, the latter of which involving hsa-miR-19b, a microRNA increased in platelets of uraemic patients and involved in platelet reactivity. These results suggest that an alteration of microRNA-based mRNA regulatory mechanisms may underlie the platelet response to uremia and entail the development of platelet-related complications in CKD.
  • PublicationAccès libre
    Dicer-derived microRNAs are utilized by the Fragile X mental retardation protein for assembly on target RNAs
    (2006-09-06) Tremblay, Sandra; Ouellet, Dominique; Khandjian, Edward William; Plante, Isabelle; Provost, Patrick; Davidovic, Laetitia; Gobeil, Lise-Andrée
    In mammalian cells, fragile X mental retardation protein (FMRP) has been reported to be part of a microRNA (miRNA)-containing effector ribonucleoprotien (RNP) complex believed to mediate translational control of specific mRNAs. Here, using recombinant proteins, we demonstrate that human FMRP can act as a miRNA acceptor protein for the ribonuclease Dicer and facilitate the assembly of miRNAs on specific target RNA sequences. The miRNA assembler property of FMRP was abrogated upon deletion of its single-stranded (ss) RNA binding K-homology domains. The requirement of FMRP for efficient RNA interference (RNAi) in vivo was unveiled by reporter gene silencing assays using various small RNA inducers, which also supports its involvement in an ss small interfering RNA (siRNA)-containing RNP (siRNP) effector complex in mammalian cells. Our results define a possible role for FMRP in RNA silencing and may provide further insight into the molecular defects in patients with the fragile X syndrome.
  • PublicationRestreint
    Emergence of a complex relationship between HIV-1 and the microRNA pathway
    (2008-10-13) Tremblay, Michel J.; Barat, Corinne; Ouellet, Dominique; Plante, Isabelle; Provost, Patrick
    Recent experimental evidences support the existence of an increasingly complex and multifaceted interaction between viruses and the microRNA-guided RNA silencing machinery of human cells. The discovery of small interfering RNAs (siRNAs), which are designed to mediate cleavage of specific messenger RNAs (mRNAs), prompted virologists to establish therapeutic strategies based on siRNAs with the aim to suppress replication of several viruses, including human immunodeficiency virus type 1 (HIV-1). It has been appreciated only recently that viral RNAs can also be processed endogenously by the microRNA-generating enzyme Dicer or recognized by cellular miRNAs, in processes that could be viewed as an adapted antiviral defense mechanism. Known to repress mRNA translation through recognition of specific binding sites usually located in their 3′ untranslated region, miRNAs of host or viral origin may exert regulatory effects towards host and/or viral genes and influence viral replication and/or the host response to viral infection. This article summarizes our current state of knowledge on the relationship between HIV-1 and miRNA-guided RNA silencing, and discusses the different aspects of their interaction.
  • PublicationAccès libre
    Identification of protein markers for extracellular vesicle (EV) subsets in cow’s milk
    (Elsevier BV, 2018-08-25) Bourassa, Sylvie; Gilbert, Caroline; Benmoussa, Abderrahim; Provost, Patrick; Gotti, Clarisse
    Extracellular vesicles (EVs), like exosomes, are small membrane vesicles involved in cell-to-cell communications that modulate numerous biological processes. We previously discovered a new EV subset in milk (sedimenting at 35,000 g; 35 K) that protected its cargo (RNAs and proteins) during simulated digestion and was more enriched in microRNAs than exosomes (sedimenting at 100 K). Here, we used LC-MS/MS to push further the comparison between these two pellets. Commonly used EV markers were not differentially enriched between the pellets, questioning their use with cow's milk EVs. Similarly, the majority of the quantified proteins were equally enriched between the two pellets. Nevertheless, 20 proteins were specific to 35 K, while 41 were specifically enriched in 100 K (p < 0.05), suggesting their potential use as specific markers. Loaded with these proteins, the EVs in these pellets might regulate translation, proliferation and cell survival for 35 K, and metabolism, extracellular matrix turnover and immunity for 100 K. This approach also brought new insights into milk EV-associated integrins and their possible role in specifically targeting recipient cell types. These findings may help better discriminate between milk EVs, improve our understanding of milk EV-associated protein function and their possible use as therapeutic tools for the management of immunity- and metabolism-associated disorders.
  • PublicationRestreint
    Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function
    (Informa Healthcare, 2019-04-18) Osman, Abdimajid; Corduan, Aurélie; Hitzler, Walter E; Provost, Patrick; Meyer, Claudius U.; Laffont, Benoit; Landry, Patricia; Boilard, Éric; Hellstern, Peter; Vamvakas, Eleftherios C.
    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established.
  • PublicationRestreint
    HIV-1 and the microRNA-guided silencing pathway : an intricate and multifaceted encounter
    (ScienceDirect, 2006-08-04) Tremblay, Michel J.; Barat, Corinne; Plante, Isabelle; Provost, Patrick
    MicroRNAs (miRNAs) are approximately 21-24 nucleotide RNAs that mediate repression of messenger RNA (mRNA) translation through recognition of specific miRNA binding sites usually located in the 3' non-translated region. Designed to simulate miRNAs, small interfering RNAs represent a powerful genetic approach to potently inhibit gene expression by mediating cleavage of the intended mRNA target. This strategy has been applied successfully to suppress replication of several viruses, including human immunodeficiency virus type 1 (HIV-1). However, recent evidences indicate that viral RNAs may themselves be processed, to some extent, by the endogenous miRNA biosynthetic machinery in mammalian cells, extending previous observations in plants. The resulting viral miRNAs may exert regulatory effects towards host and/or viral genes that may influence viral replication and modulate the course of infection. Viral miRNA generation and/or action may be limited by counteraction through inhibitory viral RNAs and/or proteins. This review article will focus on the relationship between HIV-1 and miRNA-guided RNA silencing, and discuss the different aspects of their interaction. As we learn more about the mechanism and importance of small RNA-based antiviral systems, a more intricate picture of the interaction between HIV-1 and a proven antiviral defense mechanism in lower eukaryotes is emerging.
  • PublicationRestreint
    Platelet microRNAs
    (Elsevier, 2019-01-01) Provost, Patrick
  • PublicationRestreint
    Detection of human Dicer and Argonaute 2 catalytic activity
    (Springer, 2011-04-05) Plante, Isabelle; Provost, Patrick; Perron, Marjorie; Landry, Patricia
    The microRNA (miRNA)-guided RNA silencing pathway is a central and well-defined cellular process involved in messenger RNA (mRNA) translational control. This complex regulatory process is achieved by a well orchestrated machinery composed of a relatively few protein components, among which the ribonuclease III (RNase III) Dicer and Argonaute 2 (Ago2) play a central role. These two proteins are essential and it is of particular interest to measure and detect their catalytic activity under various situations and/or conditions. In this chapter, we describe different protocols that aim to study and determine the catalytic activity of Dicer and Ago2 in cell extracts, immune complexes, and size-fractionated cell extracts. Another protocol aimed at assessing miRNA binding to Ago2 is also described. These experimental approaches are likely to be useful to researchers investigating the main steps of miRNA biogenesis and function in human health and diseases.
  • PublicationRestreint
    Protein components of the microRNA pathway and human diseases
    (Springer Nature, 2008-10-13) Provost, Patrick; Perron, Marjorie
    MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases.