Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Fortin, Daniel

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Fortin

Prénom

Daniel

Affiliation

Université Laval. Département de biologie

ISNI

ORCID

Identifiant Canadiana

ncf10849973

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • PublicationAccès libre
    Effects of global change on bird and beetle populations in boreal forest landscape : an assemblage dissimilarity analysis
    (Wiley-Blackwell Publishing Ltd., 2023-04-26) Labadie, Guillemette; Bouderbala, Ilhem; Béland, Jean-Michel; Boulanger, Yan; Hébert, Christian; Desrosiers, Patrick; Allard, Antoine; Fortin, Daniel
    Aim Despite an increasing number of studies highlighting the impacts of climate change on boreal species, the main factors that will drive changes in species assemblages remain ambiguous. We study how species community composition would change following anthropogenic and natural disturbances. We determine the main drivers of assemblage dissimilarity for bird and beetle communities. Location Côte-Nord, Québec, Canada. Methods We quantify two climate-induced pathways based on direct and indirect effects on species occurrence under different forest harvest management scenarios. The direct climate effects illustrate the impact of climate variables while the indirect effects are reflected through habitat-based climate change. We develop empirical models to predict the distribution of 127 and 108 species under climate-habitat and habitat-only models, respectively, over the next century. We analyse the regional and the latitudinal species assemblage dissimilarity by decomposing it into balanced variation in species occupancy and occurrence and occupancy and occurrence gradient. Results Both pathways increased dissimilarity in species assemblage. At the regional scale, both effects have an impact on decreasing the number of winning species. Yet, responses are much larger in magnitude under mixed climate effects. Regional assemblage dissimilarity reached 0.77 and 0.69 under mixed effects versus 0.09 and 0.10 under indirect effects for beetles and birds, respectively, between RCP8.5 and baseline climate scenarios when considering forest harvesting. Latitudinally, assemblage dissimilarity increased following the climate conditions pattern. Main conclusions The two pathways are complementary and alter biodiversity, mainly caused by species turnover. Yet, responses are much larger in magnitude under mixed climate effects. Therefore, inclusion of climatic variables considers aspects other than just those related to forest landscapes, such as life cycles of animal species. Moreover, we expect differences in occupancy between the two studied taxa. This could indicate the potential range of change in boreal species concerning novel environmental conditions.
  • PublicationAccès libre
    Long-term effect of forest harvesting on boreal species assemblages under climate change
    (Public Library of Science, 2023-03-15) Bouderbala, Ilhem; Labadie, Guillemette; Béland, Jean-Michel; Tremblay, Junior A.; Boulanger, Yan; Hébert, Christian; Desrosiers, Patrick; Allard, Antoine; Fortin, Daniel
    Logging is the main human disturbance impacting biodiversity in forest ecosystems. However, the impact of forest harvesting on biodiversity is modulated by abiotic conditions through complex relationships that remain poorly documented. Therefore, the interplay between forest management and climate change can no longer be ignored. Our aim was to study the expected long-term variations in the assemblage of bird and beetle communities following modifications in forest management under different climate change scenarios. We developed species distribution models to predict the occurrence of 88 species of birds and beetles in eastern Canadian boreal forests over the next century. We simulated three climate scenarios (baseline, RCP4.5 and RCP8.5) under which we varied the level of harvesting. We also analyzed the regional assemblage dissimilarity by decomposing it into balanced variations in species occupancy and occupancy gradient. We predict that forest harvesting will alter the diversity by increasing assemblage dissimilarity under all the studied climate scenarios, mainly due to species turnover. Species turnover intensity was greater for ground-dwelling beetles, probably because they have lower dispersal capacity than flying beetles or birds. A good dispersal capacity allows species to travel more easily between ecosystems across the landscape when they search for suitable habitats after a disturbance. Regionally, an overall increase in the probability of occupancy is projected for bird species, whereas a decrease is predicted for beetles, a variation that could reflect differences in ecological traits between taxa. Our results further predict a decrease in the number of species that increase their occupancy after harvest under the most severe climatic scenario for both taxa. We anticipate that under severe climate change, increasing forest disturbance will be detrimental to beetles associated with old forests but also with young forests after disturbances.
  • PublicationAccès libre
    Insect-mediated apparent competition between mammals in a boreal food web
    (The Academy, 2021-07-27) Labadie, Guillemette; Fortin, Daniel; McLoughlin, Philip D.; Hebblewhite, Mark
    While the important role of animal-mediated interactions in the top-down restructuring of plant communities is well documented, less is known of their ensuing repercussions at higher trophic levels. We demonstrate how typically decoupled ecological interactions may become intertwined such that the impact of an insect pest on forest structure and composition alters predator–prey interactions among large mammals. Specifically, we show how irruptions in a common, cyclic insect pest of the boreal forest, the spruce budworm (Choristoneura fumiferana), modulated an indirect trophic interaction by initiating a flush in deciduous vegetation that benefited moose (Alces alces), in turn strengthening apparent competition between moose and threatened boreal caribou (Rangifer tarandus caribou) via wolf (Canis lupus) predation. Critically, predation on caribou postoutbreak was exacerbated by human activity (salvage logging). We believe our observations of significant, large-scale reverberating consumer–producer–consumer interactions are likely to be common in nature.