Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Taghavi, Seyed Mohammad

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Taghavi

Prénom

Seyed Mohammad

Affiliation

Université Laval. Département de génie chimique

ISNI

ORCID

Identifiant Canadiana

ncf11915085

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationAccès libre
    A microfluidic method and custom model for continuous, non-intrusive biofilm viscosity measurements under different nutrient conditions
    (American Institute of Physics, 2016-11-18) Eslami, Ali; Parvinzadeh Gashti, Mazeyar; Greener, Jesse; Taghavi, Seyed Mohammad; Zarabadi, Mirpouyan
    Straight, low-aspect ratio micro flow cells are used to support biofilm attachment and preferential accumulation at the short side-wall, which progressively reduces the effective channel width. The biofilm shifts downstream at measurable velocities under the imposed force from the constant laminar co-flowing nutrient stream. The dynamic behaviour of the biofilm viscosity is modeled semi-analytically, based on experimental measurements of biofilm dimensions and velocity as inputs. The technique advances the study of biofilm mechanical properties by strongly limiting biases related to non-Newtonian biofilm properties (e.g., shear dependent viscosity) with excellent time resolution. To demonstrate the proof of principle, young Pseudomonas sp. biofilms were analyzed under different nutrient concentrations and constant micro-flow conditions. The striking results show that large initial differences in biofilm viscosities grown under different nutrient concentrations become nearly identical in less than one day, followed by a continuous thickening process. The technique verifies that in 50 h from inoculation to early maturation stages, biofilm viscosity could grow by over 2 orders of magnitude. The approach opens the way for detailed studies of mechanical properties under a wide variety of physiochemical conditions, such as ionic strength, temperature, and shear stress.