Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.

Personne :
Hynes, Alexander

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles


Nom de famille





Université Laval. Département de biochimie, de microbiologie et de bio-informatique



Identifiant Canadiana



Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • PublicationAccès libre
    Phagebook : the social network
    (Cell Press, 2017-03-16) Moineau, Sylvain; Hynes, Alexander
    Much like social networks are used to connect with friends or relatives, bacteria communicate with relatives through quorum sensing. Viruses, though, were thought to be asocial—until now. Erez et al. (2017) reveal that viruses are also sharing information with relatives.
  • PublicationAccès libre
    Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages
    (Nature Publishing Group, 2014-07-24) Moineau, Sylvain; Hynes, Alexander; Villion, Manuela
    Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated cas genes serve as a prokaryotic ‘adaptive’ immune system, protecting against foreign DNA elements such as bacteriophages. CRISPR-Cas systems function by incorporating short DNA ‘spacers’, homologous to invading DNA sequences, into a CRISPR array (adaptation). The array is then transcribed and matured into RNA molecules (maturation) that target homologous DNA for cleavage (interference). It is unclear how these three stages could occur quickly enough in a naive phage-infected cell to interfere with phage replication before this cell would be irrevocably damaged by the infection. Here we demonstrate that cells can acquire spacers from defective phages at a rate directly proportional to the quantity of replication-deficient phages to which the cells are exposed. This process is reminiscent of immunization in humans by vaccination with inactivated viruses.
  • PublicationAccès libre
    Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins
    (Nature Publishing Group, 2018-07-25) Moineau, Sylvain; Hynes, Alexander; Loehr, Jérémy; Goulet, Adeline; Agudelo, Daniel; Amigues, Béatrice; Doyon, Yannick; Rousseau, Geneviève M.; Romero, Dennis A.; Fremaux, Christophe; Horvath, Philippe; Cambillau, Christian
    CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.