Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Auger, Michèle

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Auger

Prénom

Michèle

Affiliation

Université Laval. Département de chimie

ISNI

0000000075027436

ORCID

Identifiant Canadiana

ncf10317845

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy
    (Minerals, Metals and Materials Society, 2014-02-12) Labbé, Jean-François; Jean, Jessica; Auger, Michèle; Ouellet, Marise; Laroche, Gaétan; Leroy, Marie; Pouliot, Roxane; Lefèvre, Thierry
    Research in the field of bioengineered skin substitutes is motivated by the need to find new dressings for people affected by skin injuries (burns, diabetic ulcers), and to develop adequate skin models to test new formulations developed in vitro. Thanks to advances in tissue engineering, it is now possible to produce human skin substitutes without any exogenous material, using the self-assembly method developed by the Laboratoire d’Organogénèse Expérimentale. These human skin substitutes consist of a dermis and a stratified epidermis (stratum corneum and living epidermis). Raman microspectroscopy has been used to characterize and compare the molecular organization of skin substitutes with normal human skin. Our results confirm that the stratum corneum is a layer rich in lipids which are well ordered (trans conformers) in both substitutes and normal human skin. The amount of lipids decreases and more gauche conformers appear in the living epidermis in both cases. However, the results also show that there are fewer lipids in the substitutes and that the lipids are more organized in the normal human skin. Concerning the secondary structure of proteins and protein content, the data show that they are similar in the substitutes and in the normal human skin. In fact, the epidermis is rich in α-keratin, whereas the dermis contains mainly type I collagen.
  • PublicationAccès libre
    Characterization of the structure of human skin substitutes by infrared microspectroscopy
    (Springer Link, 2013-06-21) Auger, Michèle; Laroche, Gaétan; Lafleur, Michel.; Leroy, Marie; Pouliot, Roxane
    The skin acts mainly as a protective barrier from the external environment, thanks to the stratum corneum which is the outermost layer of the skin. As in vitro tests on skin are essential to elaborate new drugs, the development of skin models closer to reality becomes essential. It is now possible to produce in vitro human skin substitutes through tissue engineering by using the self-assembly method developed by the Laboratoire d’Organogénèse Expérimentale. In the present work, infrared microspectroscopy imaging analyses were performed to get in-depth morpho-spectral characterization of the three characteristic layers of human skin substitutes and normal human skin, namely the stratum corneum, living epidermis, and dermis. An infrared spectral analysis of the skin is a powerful tool to gain information on the order and conformation of the lipid chains and the secondary structure of proteins. On one hand, the symmetric stretching mode of the lipid methylene groups (2,850 cm−1) is sensitive to the acyl chain conformational order. The evolution profile of the frequency of this vibrational mode throughout the epidermis suggests that lipids in the stratum corneum are more ordered than those in the living epidermis. On the other hand, the frequencies of the infrared components underneath the envelop of the amide I band provide information about the overall protein conformation. The analysis of this mode establishes that the proteins essentially adopt an α-helix conformation in the epidermis, probably associated with the presence of keratin, while modifications of the protein content are observed in the dermis (extracellular matrix made of collagen). Finally, the lipid organization, as well as the protein composition in the different layers, is similar for human skin substitutes and normal human skin, confirming that the substitutes reproduce essential features of real skin and are appropriate biomimetics.