Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Genest, Jérôme

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Genest

Prénom

Jérôme

Affiliation

Université Laval. Département de génie électrique et de génie informatique

ISNI

ORCID

Identifiant Canadiana

ncf11850392

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling
    (Optical Society, 2016-05-15) Deschênes, Jean-Daniel; Genest, Jérôme; Magnan-Saucier, Sébastien; Michaud-Belleau, Vincent; Bourbeau Hébert, Nicolas
    We present a straightforward and efficient method to reduce the mode spacing of a frequency comb based on binary pseudo-random phase modulation of its pulse train. As a proof of concept, we use such a densified comb to perform dual-comb spectroscopy of a long-delay Mach–Zehnder interferometer and a high-quality-factor microresonator with sub-MHz spectral sampling. Since this approach is based on binary phase modulation, it combines all the advantages of other densification techniques: simplicity, single-step implementation, and conservation of the initial comb’s power.
  • PublicationAccès libre
    Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides
    (Optical Society of America, 2020-05-13) Messaddeq, Sandra Helena; Genest, Jérôme; Jean, Philippe; LaRochelle, Sophie; Shi, Wei; Messaddeq, Younès; Douaud, Alexandre; Michaud-Belleau, Vincent
    Integration of chalcogenide waveguides in silicon photonics can mitigate the prohibitive nonlinear losses ofsilicon while leveraging the mature CMOS-compatiblenanophotonic fabrication process. In this work, wedemonstrate, for the first time, a method of integratinghigh-Q chalcogenides microring resonators onto the sil-icon photonics platform without post-process etching.The method uses micro-trench filling and a novel ther-mal dewetting technique to form low-loss chalcogenidestrip waveguides. The microrings are integrated di-rectly inside silicon photonic circuits through evanes-cent coupling, providing an uncomplicated hybrid in-tegration scheme without the need to modify the exist-ing photonics foundry process. The microrings showa high quality factor exceeding 6⇥105near 1550 nmand propagation losses below 0.7 dB/cm, indicatinga promising solution for low-cost, compact nonlinearphotonic devices with applications in various fieldssuch as telecommunications and spectroscopy.