Personne :
Genest, Jérôme

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Genest
Prénom
Jérôme
Affiliation
Université Laval. Département de génie électrique et de génie informatique
ISNI
ORCID
Identifiant Canadiana
ncf11850392
person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling
    (Optical Society, 2016-05-15) Deschênes, Jean-Daniel; Genest, Jérôme; Magnan-Saucier, Sébastien; Michaud-Belleau, Vincent; Bourbeau Hébert, Nicolas
    We present a straightforward and efficient method to reduce the mode spacing of a frequency comb based on binary pseudo-random phase modulation of its pulse train. As a proof of concept, we use such a densified comb to perform dual-comb spectroscopy of a long-delay Mach–Zehnder interferometer and a high-quality-factor microresonator with sub-MHz spectral sampling. Since this approach is based on binary phase modulation, it combines all the advantages of other densification techniques: simplicity, single-step implementation, and conservation of the initial comb’s power.
  • Publication
    Accès libre
    Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides
    (Optical Society of America, 2020-05-13) Messaddeq, Sandra Helena; Genest, Jérôme; Jean, Philippe; LaRochelle, Sophie; Shi, Wei; Messaddeq, Younès; Douaud, Alexandre; Michaud-Belleau, Vincent
    Integration of chalcogenide waveguides in silicon photonics can mitigate the prohibitive nonlinear losses ofsilicon while leveraging the mature CMOS-compatiblenanophotonic fabrication process. In this work, wedemonstrate, for the first time, a method of integratinghigh-Q chalcogenides microring resonators onto the sil-icon photonics platform without post-process etching.The method uses micro-trench filling and a novel ther-mal dewetting technique to form low-loss chalcogenidestrip waveguides. The microrings are integrated di-rectly inside silicon photonic circuits through evanes-cent coupling, providing an uncomplicated hybrid in-tegration scheme without the need to modify the exist-ing photonics foundry process. The microrings showa high quality factor exceeding 6⇥105near 1550 nmand propagation losses below 0.7 dB/cm, indicatinga promising solution for low-cost, compact nonlinearphotonic devices with applications in various fieldssuch as telecommunications and spectroscopy.