Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Gutierrez, Luis Felipe

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Gutierrez

Prénom

Luis Felipe

Affiliation

Faculté des sciences de l'agriculture et de l'alimentation, Université Laval

ISNI

ORCID

Identifiant Canadiana

ncf11865187

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
En cours de chargement...
Vignette d'image
PublicationAccès libre

Production of lactobionic acid by oxidation of lactose over gold catalysts supported on mesoporous silicas : reaction optimization and purification process proposal

2013, Gutierrez, Luis Felipe, Belkacemi, Khaled, Hamoudi, Safia

Le surplus mondial et le faible prix du lactose ont attiré l’attention de chercheurs et de l’industrie pour développer des procédés novateurs pour la production de dérivés du lactose à valeur ajoutée, tels que l’acide lactobionique (ALB), qui est un produit à haute valeur ajoutée obtenu par l’oxydation du lactose, avec d’excellentes propriétés pour des applications dans les industries alimentaire et pharmaceutique. Des recherches sur la production d’ALB via l’oxydation catalytique du lactose avec des catalyseurs à base de palladium et de palladium-bismuth, ont montré des bonnes conversions et sélectivités envers l’ALB. Cependant, le principal problème de ces catalyseurs est leur instabilité par lixiviation et désactivation par suroxydation au cours de la réaction. Les catalyseurs à base d’or ont montré une meilleure performance que les catalyseurs de bismuth-palladium pour l’oxydation de glucides. Cependant, trouver un catalyseur robuste pour l’oxydation du lactose est encore un grand défi. Dans cette dissertation, des nouveaux catalyseurs à base d’or supportés sur des matériaux mésostructurés de silicium (Au/MSM) ont été synthétisés par deux méthodes différentes, et évalués comme catalyseurs pour l’oxydation du lactose. Les catalyseurs ont été caractérisés à l’aide de la physisorption de l’azote, DRX, FTIR, TEM et XPS. Les effets des conditions d’opération, telles que la température, le pH, la charge d’or et le ratio catalyseur/lactose, sur la conversion du lactose ont été étudiés. Finalement, le procédé de déminéralisation de la solution de lactobionate de sodium à la sortie du réacteur a été étudié à l’aide de deux approches: l’électrodialyse avec des membranes bipolaires (EDMB) et la technologie d’échange d’ions. Des catalyseurs Au/MSM hautement actifs ont été synthétisés avec succès par la co-condensation d’un mélange de bis [3-(triéthoxysilyl) propyle] tétrasulfide (BTESPTS), tétra-éthyle ortho-silicate (TEOS) et le précurseur d’or (HAuCl4) en milieu acide, avec le tribloc co-polymère EO20PO70EO20 utilisé comme agent structurant. Il a été trouvé que l’augmentation du ratio molaire BTESPTS/TEOS provoque un changement dans la structure des matériaux, laquelle passe d’une structure 2D-hexagonal très ordonnée à une structure mixte de type hexagonal-vésicule et mousse cellulaire. Dans les conditions opératoires optimales (charge d’or = 0.7% en poids, T = 65ºC, catalyseur/lactose ratio = 0.2, pH = 8-9, débit d’air = 40 mL·min-1), le lactose a été complètement converti en ALB après 80-100 min de réaction, lorsqu’on a utilisé les catalyseurs synthétisés à partir des mélanges contenant une concentration molaire de BTESPTS entre 6-10%. Ces catalyseurs ont été caractérisés par une structure de type « wormhole-like », favorable pour l’accessibilité des réactifs aux nanoparticules d’or (AuNPs) d’environ 8 nm intercalées dans les murs de la silice. AuNPs d’environ 5-6 nm ont été aussi chargées avec succès sur les matériaux mésoporeux SBA-15 et SBA-15-CeO2, par l’adsorption du complexe [Au(en)2]3+ (en=éthylènediamine) en milieu alcalin. Ces catalyseurs ont conservé la structure hexagonale 2D très ordonnée typique de la SBA-15, et ils ont présenté une grande activité pour l’oxydation du lactose. Après 60 min de réaction, les catalyseurs Au/SBA-15-CeO2 (ratio molaire Ce/Si = 0.2) ont présenté l’activité catalytique la plus élevée (100% conversion du lactose) et 100% de sélectivité envers l’ALB, lorsqu’ils ont été utilisés dans les conditions optimales décrites ci-dessus. Ces résultats suggèrent que l’oxyde de cérium joue un rôle dans l’augmentation de l’activité catalytique, où la coordination et les états d’agglomération des atomes du Ce pourraient avoir un effet important. En général, les résultats des analyses XPS sur les états d’oxydation de l’or à la surface des Au/MSM, ont montré la coexistence d’espèces d’or métalliques et oxydées, avec une abondance relative suivant l’ordre Au0 > > > Au+1 > Au+3. Dans le cas des catalyseurs Au/SBA-15-CeO2, la présence des deux états d’oxydation Ce3+ et Ce4+ a été aussi observée. Les expériences de recyclage des catalyseurs ont montré que l’activité des échantillons Au/SBA-15 et Au/SBA-15-CeO2 a été significativement réduite (40-65%) après des cycles de réaction d’oxydation consécutifs, lorsque le lavage avec de l’eau a été utilisé comme procédé de régénération. Par contre, les catalyseurs ont conservé leur activité catalytique, en utilisant la calcination comme méthode de régénération, ce qui indique qu’une des causes de désactivation des catalyseurs Au/MSM pourrait être due à une forte adsorption d’espèces organiques sur la surface des catalyseurs. De plus des quantités significatives d’or ont été trouvées dans la solution après des cycles de réaction consécutifs, ce qui démontre la désactivation est aussi due à la lixiviation de la phase active dans la solution de réaction. Les données expérimentales ont révélé que tant l’EDMB que la technologie d’échange d’ions pourraient être utilisées pour produire l’ALB à partir de son sel de sodium. Cependant, en tenant compte du fait que l’EDMB a été utilisée pour la première fois pour cette application, ce procédé a donc besoin d’une amélioration pour des applications industrielles. En effet, une déminéralisation de 50% a été atteinte après l’application d’une différence de potentiel de 5.0-5.5 V pendant 100-180 min aux bornes d’une cellule d’électrodialyse à trois compartiments, tandis que la solution de lactobionate de sodium a été complètement dépourvue de sodium après 10-30 min, lorsqu’on a utilisé une résine échangeuse de cations commerciale fortement acide (AmberliteTM FPC23 H).