Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Zhang, Hai

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Zhang

Prénom

Hai

Affiliation

Université Laval. Laboratoire de vision et systèmes numériques

ISNI

ORCID

Identifiant Canadiana

ncf11735155

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 14
  • PublicationAccès libre
    Evaluation of the state of conservation of mosaics: Simulations and thermographic signal processing
    (Elsevier, 2017-04-13) Avdelidis, Nicolas P.; Zhang, Hai; Theodorakeas, Panagiotis; Maldague, Xavier; Ibarra Castanedo, Clemente; Perilli, Stefano; Sfarra, Stefano; Nardi, Iole; Koui, Maria
    Nondestructive inspection of mosaic structures is not a novelty in the thermographic scene. Interesting works can be retrieved from scientific literature, some of them dedicated to the use of static active configurations and/or the passive approach for the inspection of plastered mosaics or the assessment of mosaic floors. In the present study, a mosaic made by synthetic tesserae of different colors depicting a dove was inspected by active thermography using a static configuration. The mosaic was manufactured with artificial defects positioned at several depths and locations, where some of them, due to their dynamic nature, enabled the monitoring of their thermal effects over time. In particular, the mosaic contains: a void into which compressed air can be injected, a sponge insert that can be soaked by a known quantity of water through an external tube, and a sub-superficial recirculation circuit from which a stream of cold or hot water can flow. The variability of the nature of these defects, simulating what happens in a real case, was conveniently modeled by numerical simulation approaches. The latter point was assessed through the aid of a simulation software, while the comparison of the results obtained by numerical analysis with those derived by thermographic testing was also performed.
  • PublicationAccès libre
    Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography
    (Springer, 2017-04-05) Avdelidis, Nicolas P.; Fleuret, Julien; Saluja, Karan; Zhang, Hai; Peeters, Jeroen; Maldague, Xavier; Ibarra Castanedo, Clemente; Duan, Yuxia; Sfarra, Stefano; Fernandes, Henrique
    Terahertz (THz) imaging is increasingly used in the cultural heritage field. In particular, continuous wave (CW) and low frequency THz is attracting more attention. The first application of the THz technique inherent to the cultural heritage field dates back 10 years ago. Since 2006, tangible improvements have been conducted in the refinement of the technique, with the aim to produce clear maps useful for any art restorer. In this paper, a CW THz (0.1 THz) imaging system was used to inspect paintings on canvas both in reflection and in transmission modes. In particular, two paintings were analyzed: in the first one, similar materials and painting execution of the original artwork were used, while in the second one, the canvas layer is slightly different. Flash thermography was used herein together with the THz method in order to observe the differences in results for the textile support materials. A possible application of this method for the detection of artwork forgery requires some parameterization and analysis of various materials or thickness influence which will be addressed in a future study. In this work, advanced image processing techniques including principal component thermography (PCT) and partial least squares thermography (PLST) were used to process the infrared data. Finally, a comparison of CW THz and thermographic results was conducted.
  • PublicationAccès libre
    Enhanced infrared image processing for impacted carbon/glass fiber-reinforced composite evaluation
    (Molecular Diversity Preservation International (MDPI), 2017-12-26) Avdelidis, Nicolas P.; Zhang, Hai; Osman, Ahmad; Maldague, Xavier; Ibarra Castanedo, Clemente; Sfarra, Stefano; Fernandes, Henrique; Matikas, Theodore E.
    In this paper, an infrared pre-processing modality is presented. Different from a signal smoothing modality which only uses a polynomial fitting as the pre-processing method, the presented modality instead takes into account the low-order derivatives to pre-process the raw thermal data prior to applying the advanced post-processing techniques such as principal component thermography and pulsed phase thermography. Different cases were studied involving several defects in CFRPs and GFRPs for pulsed thermography and vibrothermography. Ultrasonic testing and signal-to-noise ratio analysis are used for the validation of the thermographic results. Finally, a verification that the presented modality can enhance the thermal image performance effectively is provided.
  • PublicationAccès libre
    Terahertz amplitude polynomial principle component regression for aramid-basalt hybrid composite laminate inspection
    (IEEE, 2018-09-17) Zhang, Hai; Maldague, Xavier; Osman, Ahmad; Sfarra, Stefano; Szielasko, Klaus; Stumm, Christopher; Sarasini, Fabrizio; Santulli, Carlo
    As an emerging non-destructive diagnostic and monitoring technique, terahertz time-domain spectroscopy (THz-TDS) imagery is attracting more attention. In this regard, new THz image processing algorithms based on infrared thermography (IRT) concepts are greatly needed, since most IRT imagery modalities are fast for in-line industrial inspection. However, this scenario is difficult due to some phisical constraints to be reached, although this idea should be followed to avoid the loss of useful information during image processing. In this paper, a novel THz amplitude polynomial principle component regression (APPCR) algorithm is proposed for the inspection of aramid-basalt hybrid composite laminates. This algorithm segments THz amplitude-frequency curves to simulate heatingup and cooling-down behaviors as in IRT; in addition, it uses an empirical orthogonal functions-based principle component regression modality to simplify the THz image analysis procedure. This experimental and analytical study shows that APPCR can: 1) simplify the THz image analysis procedure, and 2) enhance image contrast and spatial resolution. A theoretical analysis was conducted as experimental explanation, while the IRT imagery results were used for comparative purposes. In addition, signalto-noise ratio analysis was used to evaluate quantitatively the image enhancement. Finally, it is possible to conclude that THz is more suitable to inspect transparent or semi-transparent materials. Advantages and disadvantages of THz-TDS and IRT are summarized into the text.
  • PublicationAccès libre
    Experimental evaluation of pulsed thermography, lock-in thermography and vibrothermography on foreign object defect (FOD) in CFRP
    (Molecular Diversity Preservation International (MDPI), 2016-05-21) Liu, Bin; Zhang, Hai; Maldague, Xavier; Fernandes, Henrique
    In this article, optical excitation thermographic techniques, including pulsed thermography and lock-in thermography, were used to detect foreign object defect (FOD) and delamination in CFRP. Then, vibrothermography as an ultrasonic excitation technique was used to detect these defects for the comparative purposes. Different image processing methods, including cold image subtraction (CIS), principal component thermography (PCT), thermographic signal reconstruction (TSR) and Fourier transform (FT), were performed. Finally, a comparison of optical excitation thermography and vibrothermography was conducted, and a thermographic probability of detection was given.
  • PublicationAccès libre
    Thermographic non-destructive evaluation of carbon fiber-reinforced polymer plates after tensile testing
    (Plenum Press, 2015-09-17) Zhang, Hai; Maldague, Xavier; Ibarra Castanedo, Clemente; Fernandes, Henrique
    Infrared thermography (IT) is a safe non-destructive evaluation technique that has a fast inspection rate and is generally contactless. It is used for diagnostics and monitoring in several fields including composite materials. In this paper carbon fiber-reinforced polymer plates submitted to tensile testing are inspected using IT. More specifically, carbon/polyether ether ketone panels made of random-oriented strands by compression moulding are submitted to tensile testing and then inspected using three different IT active approaches. The first two approaches use optical sources however with different scanning modes. The first active approach tested is a static surface scanning inspection in reflection mode. The second one is a dynamic line scanning technique where the energy source and camera are in movement with regards to the test sample. The last active IT approach tested uses a mechanical source (ultrasound excitation) to transfer heat to the sample being tested. This last approach is commonly called vibrothermography. Results obtained were then compared to results obtained by micro computed tomography inspection and microscopy. Results revealed voids associated with resin-rich regions as well as cracks.
  • PublicationAccès libre
    An active infrared thermography method for fiber orientation assessment of fiber-reinforced composite materials
    (Pergamon, 2015-08-28) Zhang, Hai; Maldague, Xavier; Fernandes, Henrique
    Fiber orientation in composite materials is an important feature since the arrangement or orientation of the fibers relative to one another has a significant influence on the strength and other properties of fiber reinforced composites. In this paper we present a method to assess the fiber orientation on the surface of carbon fiber reinforced polymer (CFRP) laminates. More specifically, a diode-laser beam is used to locally heat a small spot on the surface of the sample. Observation of the heat pattern in the infrared spectrum enables the assessment of the fiber orientation. Different samples and different regions on the surface of the samples are tested in order to estimate the precision of the method.
  • PublicationAccès libre
    Fiber orientation assessment on randomly-oriented strands composites by means of infrared thermography
    (Elsevier Applied Science Publishers, 2015-11-02) Zhang, Hai; Maldague, Xavier; Ibarra Castanedo, Clemente; Fernandes, Henrique
    In this paper, an infrared thermography technique is used to assess the fiber orientation on the surface of carbon fiber reinforced polymer (CFRP) moulded with randomly-oriented strands (ROS). Due to the randomness of the material, a point by point inspection would be very time consuming. In this paper it is proposed to use a flying laser spot technique to heat a line-region on the surface of the sample instead of a spot. During our experiments, a flying laser spot inspection was performed in 30 s while a point by point inspection of the same area would require about 25 min. An artificial neural network (ANN) was then used to estimate the fiber orientation over the heated line. The classification rate obtained with the network was 91.2% for the training stage and 71.6% for the testing stage.
  • PublicationAccès libre
    Automated assessment and tracking of human body thermal variations using unsupervised clustering
    (The Optical Society of America, 2016-11-17) Fleuret, Julien; Zhang, Hai; Maldague, Xavier; Yousefi, Bardia; Watt, Raymond; Klein, Matthieu
    The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subject’s body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures.
  • PublicationAccès libre
    Comparative study on submillimeter flaws in stitched T-joint carbon fiber reinforced polymer by infrared thermography, microcomputed tomography, ultrasonic c-scan and microscopic inspection
    (Society of Photo-optical Instrumentation Engineers., 2015-10-15) Zhang, Hai; Hassler, Ulf; Maldague, Xavier; Ibarra Castanedo, Clemente; Robitaille, François; Genest, Marc; Fernandes, Henrique; Joncas, Simon
    Stitching is used to reduce dry-core (incomplete infusion of T-joint core) and reinforce T-joint structure. However, it may cause new types of flaws, especially submillimeter flaws. Microscopic inspection, ultrasonic c-scan, pulsed thermography, vibrothermography, and laser spot thermography are used to investigate the internal flaws in a stitched T-joint carbon fiber-reinforced polymer (CFRP) matrix composites. Then, a new microlaser line thermography is proposed. Microcomputed tomography (microCT) is used to validate the infrared results. A comparison between microlaser line thermography and microCT is performed. It was concluded that microlaser line thermography can detect the internal submillimeter defects. However, the depth and size of the defects can affect the detection results. The microporosities with a diameter of less than 54  μm are not detected in the microlaser line thermography results. Microlaser line thermography can detect the microporosity (a diameter of 0.162 mm) from a depth of 90  μm. However, it cannot detect the internal microporosity (a diameter of 0.216 mm) from a depth of 0.18 mm. The potential causes are given. Finally, a comparative study is conducted.