Personne : Tossou, Prudencio
En cours de chargement...
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Tossou
Prénom
Prudencio
Affiliation
Département d'informatique et de génie logiciel, Faculté des sciences et de génie, Université Laval
ISNI
ORCID
Identifiant Canadiana
ncf11924922
person.page.name
1 Résultats
Résultats de recherche
Voici les éléments 1 - 1 sur 1
- PublicationRestreintThe gametic synapse : RNA transfer to the bovine oocyte(Oxford University Press, 2014-10-01) Gilbert, Isabelle; Caballero, Julieta; Tossou, Prudencio; Khandjian, Edward William; Macaulay, Angus; Richard, François J.; Barreto, Rodrigo; Clarke, Hugh James; Robert, Claude; Fournier, Éric; Sirard, Marc-André; Hyttel, P.Even after several decades of quiescent storage in the ovary, the female germ cell is capable of reinitiating transcription to build the reserves that are essential to support early embryonic development. In the current model of mammalian oogenesis, there exists bilateral communication between the gamete and the surrounding cells that is limited to paracrine signaling and direct transfer of small molecules via gap junctions existing at the end of the somatic cells' projections that are in contact with the oolemma. The purpose of this work was to explore the role of cumulus cell projections as a means of conductance of large molecules, including RNA, to the mammalian oocyte. By studying nascent RNA with confocal and transmission electron microscopy in combination with transcript detection, we show that the somatic cells surrounding the fully grown bovine oocyte contribute to the maternal reserves by actively transferring large cargo, including mRNA and long noncoding RNA. This occurrence was further demonstrated by the reconstruction of cumulus-oocyte complexes with transfected cumulus cells transferring a synthetic transcript. We propose selective transfer of transcripts occurs, the delivery of which is supported by a remarkable synapselike vesicular trafficking connection between the cumulus cells and the gamete. This unexpected exogenous contribution to the maternal stores offers a new perspective on the determinants of female fertility.