Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Larouche, Danielle

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Larouche

Prénom

Danielle

Affiliation

Université Laval. Département de chirurgie

ISNI

ORCID

Identifiant Canadiana

ncf10162624

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 27
  • PublicationRestreint
    Considerations in the choice of a skin donor site for harvesting keratinocytes containing a high proportion of stem cells for culture in vitro
    (Butterworth-Heinemann, 2010-12-03) Germain, Lucie; Larouche, Danielle; Paquet, Claudie; Fugère, Claudia.; Genest, Hervé; Auger, François A.; Gauvin, Robert; Têtu, Félix-Andre; Bouchard, Maurice; Roy, Aphonse; Fradette, Julie; Lavoie, Amélie; Beauparlant, Annie.
    The treatment of severely burned patients has benefited from the grafting of skin substitutes obtained by expansion of epithelial cells in culture. The aim of this study was to evaluate whether the anatomic site chosen for harvesting skin had an impact on the quality of the derived cell cultures. Considering that hair follicles contain epithelial stem cells, we compared hairy skin sites featuring different densities and sizes of hair follicles for their capacity to generate high quality keratinocyte cultures. Three anatomic sites from adult subjects were compared: scalp, chest skin and p-auricular (comprising pre-auricular and post-auricular) skin. Keratin (K) 19 was used as a marker to evaluate the proportion of stem cells. Keratinocytes were isolated using the two-step thermolysin and trypsin cell extraction method, and cultured in vitro. The proportion of K19-positive cells harvested from p-auricular skin was about twice that of the scalp. This K19-positive cell content also remained higher during the first subcultures. In contrast to these in vitro results, the number of K19-positive cells estimated in situ on skin sections was about double in scalp as in p-auricular skin. Chest skin had the lowest number of K19-positive cells. These results indicate that in addition to the choice of an adult anatomic site featuring a high number of stem cells in situ, the quality of the cultures greatly depends on the ability to extract stem cells from the skin biopsy
  • PublicationAccès libre
    Évaluation de la relation entre les apports en antioxydants et le niveau d'expression de marqueurs inflammatoires dans le tissu mammaire normal de femmes atteintes du cancer du sein
    (2017) Larouche, Danielle; Diorio, Caroline
    Le régime alimentaire joue un rôle dans le développement du cancer du sein, mais le mode d’action des facteurs nutritionnels sur le tissu mammaire est mal compris. Un des mécanismes potentiels est la création d’un stress oxydatif qui favoriserait le processus tumoral et l’inflammation. Par conséquent, la consommation d’antioxydants pourrait contribuer à réduire l’inflammation dans les tissus et à prévenir le cancer du sein. Cependant, peu d’études ont exploré la relation entre les apports en antioxydants et l’expression de marqueurs inflammatoires dans le tissu mammaire. Ce projet visait à évaluer la relation entre les apports en antioxydants et l’expression de 11 marqueurs inflammatoires dans le tissu mammaire normal de 160 femmes atteintes d’un cancer du sein. Les données alimentaires ont été obtenues par un questionnaire de fréquence alimentaire auto-administré mesurant les apports alimentaires et la prise de suppléments de l’année précédente. L’expression des marqueurs inflammatoires a été évaluée par immunohistochimie. La corrélation entre les apports en antioxydants et l’expression des marqueurs inflammatoires a été analysée par le coefficient de corrélation partiel de Spearman. Les analyses ont été effectuées pour l’ensemble de l’échantillon et pour les femmes pré-ménopausées et post-ménopausées prises séparément. Après la correction de Bonferroni, les apports élevés en bêta-tocophérol corrélaient avec une diminution de l’expression de l’IL-10 pour l’ensemble de l’échantillon (r=-0,26) et chez les femmes post-ménopausées (r=-0,39). Parmi toutes les femmes, les apports en zinc corrélaient négativement avec l’expression de l’IL-10 (r=-0,26) et parmi les femmes post-ménopausées, les apports en sélénium corrélaient négativement avec l’expression de la lactoferrine (r=-0,39). Aucune association significative n’a été observée chez les femmes pré-ménopausées. Nos résultats suggèrent que le bêta-tocophérol, le zinc et le sélénium pourraient agir sur le tissu mammaire par des mécanismes affectant l’expression de certains marqueurs inflammatoires et que ceci serait influencé par le statut ménopausique.
  • PublicationRestreint
    Minimal contraction for tissue-engineered skin substitutes when matured at the air–liquid interface
    (John Wiley & Sons, 2013-06-03) Germain, Lucie; Larouche, Danielle; Auger, François A.; Marcoux, Hugo-Bastien; Gauvin, Robert; Guignard, Rina
    The structural stability of skin substitutes is critical to avoid aesthetic and functional problems after grafting, such as contractures and hypertrophic scars. The present study was designed to assess the production steps having an influence on the contractile behaviour of the tissue-engineered skin made by the self-assembly approach, where keratinocytes are cultured on tissue-engineered dermis comprised of fibroblasts and the endogenous extracellular matrix they organized. Thus, different aspects were investigated, such as the assembly method of the engineered dermis (various sizes and anchoring designs) and the impact of epithelial cell differentiation (culture submerged in the medium or at the air–liquid interface). To evaluate the structural stability at the end of the production, the substitutes were detached from their anchorages and deposited on a soft substrate, and contraction was monitored over 1 week. Collected data were analysed using a mathematical model to characterize contraction. We observed that the presence of a differentiated epidermis significantly reduced the amount of contraction experienced by the engineered tissues, independently of the assembly method used for their production. When the epidermis was terminally differentiated, the average contraction was only 24 4% and most of the contraction occurred within the first 12 h following deposition on the substrate. This is 2.2-fold less compared to when the epidermis was cultured under the submerged condition, or when tissue-engineered dermis was not overlaid with epithelial cells. This study highlights that the maturation at the air–liquid interface is a critical step in the reconstruction of a tissue engineered skin that possesses high structural stability
  • PublicationRestreint
    Tissue engineering of skin and cornea : Development of new models for in vitro studies
    (Academy of Sciences, 2010-06-02) Guérin, Sylvain; Germain, Lucie; Larouche, Danielle; Bisson, Francis; Paquet, Claudie; Robitaille, Hubert; Auger, François A.; Gaudreault, Manon.; Martel, Israël; Duranceau, Louise; Proulx, Stéphanie; Carrier, Patrick; Simard-Bisson, Carolyne; Fradette, Julie
    Human beings are greatly preoccupied with the unavoidable nature of aging. While the biological processes of senescence and aging are the subjects of intense investigations, the molecular mechanisms linking aging with disease and death are yet to be elucidated. Tissue engineering offers new models to study the various processes associated with aging. Using keratin 19 as a stem cell marker, our studies have revealed that stem cells are preserved in human skin reconstructed by tissue engineering and that the number of epithelial stem cells varies according to the donor's age. As with skin, human corneas can also be engineered in vitro. Among the epithelial cells used for reconstructing skin and corneas, significant age-dependent variations in the expression of the transcription factor Sp1 were observed. Culturing skin epithelial cells with a feeder layer extended their life span in culture, likely by preventing Sp1 degradation in epithelial cells, therefore demonstrating the pivotal role played by this transcription factor in cell proliferation. Finally, using the human tissue-engineered skin as a model, we linked Hsp27 activation with skin differentiation.
  • PublicationRestreint
    Identification of epithelial stem cells in vivo and in vitro using keratin 19 and BrdU
    (Humana Press, 2010-01-01) Germain, Lucie; Larouche, Danielle; Paquet, Claudie; Simard-Bisson, Carolyne; Lavoie, Amélie
    Progress in the identification of skin stem cells and the improvement of culture methods open the possibility to use stem cells in regenerative medicine. Based on their quiescent nature, the development of label retention assays allowed the localization of skin stem cells in the bulge region of the pilosebaceous units and in the bottom of rete ridges in glabrous skin. The development of markers such as keratin 19 also permits their study in human tissues. In this chapter, protocols to identify skin stem cells based on their slow-cycling property and their expression of keratin 19 will be described in detail. The methods include the labeling of skin stem cells within mouse or rat tissues in vivo, the labeling of proliferative human cells in vitro using 5-bromo-2-deoxyuridine (BrdU), and the detection of keratin 19 and BrdU by immunofluorescence or immunoperoxidase staining.
  • PublicationAccès libre
    Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries
    (Mary Ann Liebert, 2016-11-01) Germain, Lucie; Larouche, Danielle; Auger, François A.; Martel, Israël; Cantin-Warren, Laurence; Ayoub, Akram; Gauvin, Robert; Guignard, Rina; Desgagné, Maxime; Moulin, Véronique; Lavoie, Amélie
    There is a clinical need for skin substitutes to replace full-thickness skin loss. Our group has developed a bilayered skin substitute produced from the patient’s own fibroblasts and keratinocytes referred to as Self-Assembled Skin Substitute (SASS). After cell isolation and expansion, the current time required to produce SASS is 45 days. We aimed to optimize the manufacturing process to standardize the production of SASS and to reduce production time. The new approach consisted in seeding keratinocytes on a fibroblast-derived tissue sheet before its detachment from the culture plate. Four days following keratinocyte seeding, the resulting tissue was stacked on two fibroblast-derived tissue sheets and cultured at the air–liquid interface for 10 days. The resulting total production time was 31 days. An alternative method adapted to more contractile fibroblasts was also developed. It consisted in adding a peripheral frame before seeding fibroblasts in the culture plate. SASSs produced by both new methods shared similar histology, contractile behavior in vitro and in vivo evolution after grafting onto mice when compared with SASSs produced by the 45-day standard method. In conclusion, the new approach for the production of high-quality human skin substitutes should allow an earlier autologous grafting for the treatment of severely burned patients.
  • PublicationRestreint
    Mechanical properties of tissue-engineered vascular constructs produced using arterial or venous cells
    (Mary Ann Liebert, Inc. Publishers, 2011-04-02) Guillemette, Maxime.; Germain, Lucie; Galbraith, Todd; Larouche, Danielle; Aubé, David; Marcoux, Hugo; Hayward, Cindy Jean; Bourget, Jean-Michel; Auger, François A.; Gauvin, Robert
    There is a clinical need for better blood vessel substitutes, as current surgical procedures are limited by the availability of suitable autologous vessels and suboptimal behavior of synthetic grafts in small caliber arterial graft (<5 mm) applications. The aim of the present study was to compare the mechanical properties of arterial and venous tissue-engineered vascular constructs produced by the self-assembly approach using cells extracted from either the artery or vein harvested from the same human umbilical cord. The production of a vascular construct comprised of a media and an adventitia (TEVMA) was achieved by rolling a continuous tissue sheet containing both smooth muscle cells and adventitial fibroblasts grown contiguously in the same tissue culture plate. Histology and immunofluorescence staining were used to evaluate the structure and composition of the extracellular matrix of the vascular constructs. The mechanical strength was assessed by uniaxial tensile testing, whereas viscoelastic behavior was evaluated by stepwise stress-relaxation and by cyclic loading hysteresis analysis. Tensile testing showed that the use of arterial cells resulted in stronger and stiffer constructs when compared with those produced using venous cells. Moreover, cyclic loading demonstrated that constructs produced using arterial cells were able to bear higher loads for the same amount of strain when compared with venous constructs. These results indicate that cells isolated from umbilical cord can be used to produce vascular constructs. Arterial constructs possessed superior mechanical properties when compared with venous constructs produced using cells isolated from the same human donor. This study highlights the fact that smooth muscle cells and fibroblasts originating from different cell sources can potentially lead to distinct tissue properties when used in tissue engineering applications.
  • PublicationRestreint
    Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.
    (liebertonline.com, 2018-01-09) Fortier, Kristine; Germain, Lucie; Larouche, Danielle; Paquet, Claudie
    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7–21 days of maturation at the air–liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10–26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.
  • PublicationAccès libre
    Markers for an In vitro skin substitute
    (Artech House, 2018-02-01T16:41:46Z) Germain, Lucie; Jean, Jessica; Larouche, Danielle; Berthod, François; Pouliot, Roxane; Maguire, Tim; Novik, Eric
    The tissue engineering self-assembly approach allows the production of skin substitutes comprising both the dermis and epidermis, using methods promoting the secretion and organization of a dense extracellular matrix by skin cells. In a reconstructed epidermis, all cellular layers of the native tissue are present. An evaluation of the expression and localization of a number of specific protein markers revealed that the self-assembled, tissue-engineered skin substitute shares some common features with normal human skin, such as the expression of Ki-67, keratins 10 and 14, filaggrin, involucrin, transglutaminase, DLK, a3-integrin subunit, laminin-S, and collagens I, II, 1V, and VII. At the ultrastructural level, many differentiation markers can be observed, including desmosomes, as well as an organized basement membrane presenting hemidesmosomes, lamina densa, and lamina lucida. In this chapter, protocols to generate skin substitutes by the self-assembly approach will be presented and the methods including the labeling of the principal skin differentiation markers by immunofluorescence will be examined.
  • PublicationRestreint
    Effect of intense pulsed light treatment on human skin in vitro : analysis of immediate effects on dermal papillae and hair follicle stem cells
    (British Association of Dermatologists by Blackwell Scientific Publications, 2013-10-10) Germain, Lucie; Larouche, Danielle; Ratté, Gilles; Kim, Dong Hyun; Beaumont, C.
    Background : Hair follicles house a permanent pool of epithelial stem cells. Intense pulsed light (IPL) sources have been successfully used for hair removal, but long-term hair reduction may require several treatments. Many questions remain regarding the impact of IPL treatment on the structure of the hair follicle, more specifically on hair follicular stem cells and dermal papilla cells, a group of specialized cells that orchestrate hair growth. Objectives : To characterize the destruction of human hair follicles and surrounding tissues following IPL treatment, with more attention paid to the bulge and the bulb regions. Methods : Human scalp specimens of Fitzpatrick skin phototype II were exposed ex vivo to IPL pulses and were then processed for histological analysis, immunodetection of stem cell-associated keratin 19, and revelation of the endogenous alkaline phosphatase activity expressed in dermal papilla cells. Results : Histological analysis confirmed that pigmented structures, such as the melanin-rich matrix cells of the bulb in anagen follicles and the hair shaft, are principally targeted by IPL treatment, while white hairs and epidermis remained unaffected. Damage caused by heat sometimes extended over the dermal papilla cells, while stem cells were mostly spared. Conclusions : IPL epilation principally targets pigmented structures. Our results suggest that, under the tested conditions, collateral damage does not deplete stem cells. Damage at the dermal papilla was observed only with high-energy treatment modalities. Extrapolated to frequently treated hairs, these observations explain why some hairs grow back after a single IPL treatment.