Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Larouche, Danielle

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Larouche

Prénom

Danielle

Affiliation

Université Laval. Département de chirurgie

ISNI

ORCID

Identifiant Canadiana

ncf10162624

person.page.name

Résultats de recherche

Voici les éléments 1 - 5 sur 5
  • PublicationRestreint
    Reconstructed human skin produced in vitro and grafted on athymic mice
    (Ovid, 2002-06-15) Li, Hui; Germain, Lucie; Xu, Wen; Larouche, Danielle; Juhász, Julianna; Auger, François A.; Pouliot, Roxane
    Background. The best alternative to a split-thickness graft for the wound coverage of patients with extensive burns should be in vitro reconstructed autologous skin made of both dermis and epidermis and devoid of exogenous extracellular matrix proteins and synthetic material. We have designed such a reconstructed human skin (rHS) and present here its first in vivo grafting on athymic mice. Methods. The rHS was made by culturing newborn or adult keratinocytes on superimposed fibrous sheets obtained after culturing human fibroblasts with ascorbic acid. Ten days after keratinocyte seeding, reconstructed skins were either cultured at the air-liquid interface or grafted on athymic mice. We present the macroscopic, histologic, and phenotypic properties of such tissues in vitro and in vivo after grafting on nude mice. Results. After maturation in vitro, the reconstructed skin exhibited a well-developed human epidermis that expressed differentiated markers and basement membrane proteins. Four days after grafting, a complete take of all grafts was obtained. Histological analysis revealed that the newly generated epidermis of newborn rHS was thicker than that of adult rHS after 4 days but similar 21 days after grafting. The basement membrane components (bullous pemphigoid antigens, laminin, and type IV and VII collagens) were detected at the dermo-epidermal junction, showing a continuous line 4 days after grafting. Ultrastructural studies revealed that the basement membrane was continuous and well organized 21 days after transplantation. The macroscopic aspect of the reconstructed skin revealed a resistant, supple, and elastic tissue. Elastin staining and elastic fibers were detected as a complex network in the rHS that contributes to the good elasticity of this new reconstructed tissue. Conclusions. This new rHS model gives supple and easy to handle skins while demonstrating an adequate wound healing on mice. These results are promising for the development of this skin substitute for permanent coverage of burn wounds.
  • PublicationRestreint
    Tissue reorganization in response to mechanical load increases functionality
    (2005-02-28) Bergeron, François; Langelier, Ève.; Grenier, Guillaume.; Germain, Lucie; Larouche, Danielle; Dupuis, Daniel; Rancourt, Denis; Auger, François A.; Gauvin, Robert; Baker, Kathleen; Rémy-Zolghadri, Murielle
    In the rapidly growing field of tissue engineering, the functional properties of tissue substitutes are recognized as being of the utmost importance. The present study was designed to evaluate the effects of static mechanical forces on the functionality of the produced tissue constructs. Living tissue sheets reconstructed by the self-assembly approach from human cells, without the addition of synthetic material or extracellular matrix (ECM), were subjected to mechanical load to induce cell and ECM alignment. In addition, the effects of alignment on the function of substitutes reconstructed from these living tissue sheets were evaluated. Our results show that tissue constructs made from living tissue sheets, in which fibroblasts and ECM were aligned, presented higher mechanical resistance. This was assessed by the modulus of elasticity and ultimate strength as compared with tissue constructs in which components were randomly oriented. Moreover, tissue-engineered vascular media made from a prealigned living tissue sheet, produced with smooth muscle cells, possessed greater contractile capacity compared with those produced from living tissue sheets that were not prealigned. These results show that the mechanical force generated by cells during tissue organization is an asset for tissue component alignment. Therefore, this work demonstrates a means to improve the functionality (mechanical and vasocontractile properties) of tissues reconstructed by tissue engineering by taking advantage of the biomechanical forces generated by cells under static strain.
  • PublicationRestreint
    La médecine régénératrice : les cellules souches, les interactions cellulaires et matricielles dans la reconstruction cutanée et cornéenne par génie tissulaire
    (Elsevier Masson, 2008-06-02) Germain, Lucie; Larouche, Danielle; Paquet, Claudie; Auger, François A.; Proulx, Stéphanie; Carrier, Patrick; Lavoie, Amélie; Beauparlant, Annie.
    Le génie tissulaire vise à produire des tissus ou organes in vitro pour le remplacement permanent des tissus endommagés. À cette fin, la production de tissus autologues possède l’avantage d’éviter tout risque de rejet suite à leur transplantation sur un patient. La maîtrise des conditions de culture des cellules souches humaines postnatales est essentielle à la réalisation de tels tissus. Il est aussi souhaitable que leur organisation histologique et leur fonctionnalité se rapprochent de celles des tissus natifs. De plus, les cellules souches jouent un rôle essentiel au niveau du remplacement des cellules épithéliales différenciées dans les tissus qui doivent constamment se renouveler, tels que la peau et la cornée. Nous avons décrit une méthode qui permet de produire des organes vivants in vitro à partir de cellules humaines postnatales sans ajouter de biomatériaux. Cette méthode d’auto-assemblage repose sur la capacité qu’ont les cellules mésenchymateuses de s’organiser en tissu en présence des conditions de culture adéquates. Grâce à différentes techniques, ces tissus peuvent ensuite être assemblés en organes plus complexes tels que les vaisseaux sanguins, les valves cardiaques, la peau ou encore la cornée. Ces divers tissus pourront éventuellement être utilisés pour le remplacement d’organes malades ou endommagés et fourniront de nouvelles alternatives pour la médecine régénératrice de demain. Cet article de revue sera concentré sur la peau et la cornée. L’importance d’utiliser des conditions d’isolement et de culture qui permettent de conserver les cellules souches et de contrôler l’organisation des tissus afin d’assurer la qualité et la fonctionnalité des organes reconstitués par génie tissulaire sera discutée.
  • PublicationAccès libre
    Human post-natal stem cells in organs produced by tissue engineering for clinical applications
    (Nova Biomedical Books, 2008-01-01) Germain, Lucie; Larouche, Danielle; Auger, François A.; Fradette, Julie
    This chapter will focus on the clinical applications of post-natal stem cells. Massive tissue loss frequently requires grafting for proper healing. Considering that there is a shortage of organ donors, the expansion of cells in vitro and the reconstruction of tissues or organs constitute a very valuable alternative solution. The first clinical application of such tissues has been the autologous culture of epidermal cells for the treatment of burn patients, and will be presented herein. Since the cutaneous epithelium forms squames that are lost, it is continuously renewed every 28 days and its long-term regeneration depends on stem cells. The importance of preserving stem cells during in vitro expansion and after grafting will thus be discussed. Clinical applications of cultured cells from other tissues, such as limbal stem cells for corneal epithelium (surface of the eye) replacement, will also be reviewed. Finally, the development of new promising technologies and methods taking advantage of other sources of stem cells that could be isolated after birth from tissues such as adipose depots will also be presented.
  • PublicationRestreint
    A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs
    (Mary Ann Liebert, 2009-12-28) Germain, Lucie; Ahsan, Taby; Larouche, Danielle; Auger, François A.; Gauvin, Robert; Dubé, Jean; Tanguay, Robert M.; Lévesque, Philippe
    There is a clinical need for a functional tissue-engineered blood vessel because small-caliber arterial graft (<5 mm) applications are limited by the availability of suitable autologous vessels and suboptimal performances of synthetic grafts. This study presents an analysis of the mechanical properties of tissue-engineered vascular constructs produced using a novel single-step self-assembly approach. Briefly, the tissue-engineered vascular media were produced by culturing smooth muscle cell in the presence of sodium l-ascorbate until the formation of a cohesive tissue sheet. This sheet was then rolled around a tubular support to create a media construct. Alternatively, the tissue-engineered vascular adventitia was produced by rolling a tissue sheet obtained from dermal fibroblasts or saphenous vein fibroblasts. The standard self-assembly approach to obtain the two-layer tissue-engineered vascular constructs comprising both media and adventitia constructs consists of two steps in which tissue-engineered vascular media were first rolled on a tubular support and a tissue-engineered vascular adventitia was then rolled on top of the first layer. This study reports an original alternative method for assembling tissue-engineered vascular constructs comprising both media and an adventitia in a single step by rolling a continuous tissue sheet containing both cell types contiguously. This tissue sheet was produced by growing smooth muscle cells alongside fibroblasts (saphenous vein fibroblasts or dermal fibroblasts) in the same culture dish separated by a spacer, which is removed later in the culture period. The mechanical strength assessed by uniaxial tensile testing, burst pressure measurements, and viscoelastic behavior evaluated by stepwise stress relaxation tests reveals that the new single-step fabrication method significantly improves the mechanical properties of tissue-engineered vascular construct for both ultimate tensile strength and all the viscoelastic moduli.