Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Boudreau, Denis

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Boudreau

Prénom

Denis

Affiliation

Université Laval. Département de chimie

ISNI

ORCID

Identifiant Canadiana

ncf10368871

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    A metal-enhanced Hg2+-responsive fluorescent nanoprobe: from morphological design to application to natural waters
    (American Chemical Society, 2022-06-22) Picard-Lafond, Audrey; Boudreau, Denis; Larivière, Dominic
    Metal-enhanced fluorescence (MEF) is a powerful tool in the design of sensitive chemical sensors by improving brightness and photostability to target-responsive fluorophores. Compounding these advantages with the modest hardware requirements of fluorescent sensing compared to that of centralized elemental analysis instruments, expanding the use of MEF to the detection of low-level inorganic pollutants is a compelling aspiration. Among the latter, monitoring mercury in the environment, where some of its species disseminate through the food chain and, in time, to humans, has elicited a broad research effort towards the development of Hg2+-responsive fluorescent sensors. Herein, a Hg2+-sensitive MEF-enabled probe was conceived by grafting a Hg2+-responsive fluorescein derivative to concentric Ag@SiO2 NPs, where the metallic core enhances fluorescent emission of molecular probes embedded in a surrounding silica shell. Time-resolved fluorescence measurements showed that the fluorophore’s excited state lifetime decreases from 3.9 ns in a solid, coreless silica sphere, to 0.4 ns in the core-shell nanoprobe, granting the dye a better resistance to photobleaching. The Ag-core system showed a sizable improvement in limit of detection at 2 nM (0.4 ppb) compared to 50 nM (10 ppb) in the silica-only colloids and its effectiveness for natural water analysis was demonstrated. Overall, the reported nanoarchitecture hints at the potential of MEF for heavy metal detection by fluorescence detection.
  • PublicationAccès libre
    Acting as a molecular tailor : dye structural modifications for improved sensitivity towards lysophosphatidic acids sensing
    (American Chemiscal Society, 2022-12-28) Fontaine, Nicolas; Harter, Lara; Marette, André; Boudreau, Denis
    Lysophosphatidic acids (LPA) are key biomarkers for several physiological processes, the monitoring of which can provide insights into the host’s health. Common lab-based techniques for their detection are cumbersome, expensive and necessitate specialized personnel to operate. LPA-sensitive fluorescent probes have been described, albeit for non-aqueous conditions, which impedes their use in biological matrices. In this paper, we explore in detail the influence of structure on the extent of aggregation-induced fluorescence quenching using specially synthesized styrylpyridinium dyes bearing structural adaptations to bestow them enhanced affinity towards LPA in aqueous media. Spectroscopic investigations supported by time-resolved fluorimetry revealed the contribution of excimer formation to the fluorescence quenching mechanism displayed by the fluorescent probes. Experimental observations of the influence of structure on detection sensitivity were supported by DFT calculations.