Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Bissonnette, Benoît

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Bissonnette

Prénom

Benoît

Affiliation

Université Laval. Département de génie civil et de génie des eaux

ISNI

ORCID

Identifiant Canadiana

ncf11903423

person.page.name

Résultats de recherche

Voici les éléments 1 - 5 sur 5
En cours de chargement...
Vignette d'image
PublicationRestreint

Conception avec prise en compte de la corrosion

2007-05-01, Jolin, Marc, Bissonnette, Benoît, Conciatori, David, Marchand, Jacques

La corrosion des barres d'armature est la première cause des interventions de remise en état sur les ouvrages en béton armé. Dans le domaine des ouvrages d'art routiers, cette corrosion est initiée dans la majorité des cas par la présence de chlorures provenant des produits salants utilisés pour déneiger les routes en hiver. Alors que le phénomène de corrosion en présence d'ions chlorures est relativement bien connu, l'effet du microclimat et l'importance de l'exposition d'un élément en béton armé sur le transport des ions chlorures à travers le béton d'enrobage ne sont pas encore bien compris et modélisés. Plusieurs modèles permettent aujourd’hui de décrire l’évolution physico-chimique d’agents agressifs dans le béton armé et leur interaction avec l’eau et la température, et donc de prédire l’évolution des détériorations. L’aspect non déterministe de la problématique de la corrosion peut également être pris en considération dans ces modèles complexes et donner une idée sur l’incertitude d’apparition de dégâts structuraux. Cette évaluation plus fine des risques de détérioration par corrosion permet de constituer une base objective de dimensionnement à la corrosion, de discussion et de concertation entre maîtres d'oeuvre et spécialistes de la maintenance des ouvrages.

En cours de chargement...
Vignette d'image
PublicationRestreint

Design of a low-density wood-cement particleboard for interior wall finish

2011-10-13, Tittelein, Pierre, Bissonnette, Benoît, Cloutier, Alain

Gypsum boards form a very large part of the building walls and ceilings finishing market. However, they have poor screw-withdrawal resistance, low hardness and are highly sensitive to moisture. The objective of this study was to determine whether it is possible to make wood–cement particleboards of the same density as gypsum boards while avoiding these drawbacks. Wood–cement particleboards were made by pouring the wood–cement paste in a mould. This was made possible by adding a viscosity modifying mixture to the mixing water and a set accelerating mixture to improve wood/cement compatibility. The mechanical properties and surface quality of the wood–cement particleboards were improved by using, on the board surfaces, paper sheets that were the same as those used on gypsum boards. The average specific gravity of the wood–cement particleboards was the same as gypsum boards, at 0.7. The average bending modulus of rupture obtained for the wood–cement particleboards was 10 MPa in the finishing paper principal direction and 5 MPa in the other direction compared to 5.5 MPa and 1.6 MPa respectively for gypsum boards. The average screw-withdrawal resistance of wood–cement particleboards was 570 N, that is, 1.7 times higher than for gypsum boards.

En cours de chargement...
Vignette d'image
PublicationAccès libre

The effect of wood ash as a partial cement replacement material for making wood-cement panels

2019-08-28, Bissonnette, Benoît, Duchesne, Josée., Cloutier, Alain, Vu, Viet-Anh, Blanchet, Pierre

The aim of this study was to consider the use of biomass wood ash as a partial replacement for cement material in wood-cement particleboards. Wood-cement-ash particleboards (WCAP) were made with 10%, 20%, 30%, 40%, and 50% of wood ash as a partial replacement for cement with wood particles and tested for bending strength, stiffness, water absorption, and thermal properties. Test results indicate that water demand increases as the ash content increases, and the mechanical properties decrease slightly with an increase of the ash content until 30% of replacement. On the other hand, the heat capacity increases with the wood ash content. The WCAP can contribute to reducing the heat loss rate of building walls given their relatively low thermal conductivity compared to gypsum boards. The replacement of cement to the extent of approximately 30% by weight was found to give the optimum results.

En cours de chargement...
Vignette d'image
PublicationAccès libre

Wood-cement-steatite panels used in replacement of gypsum boards in residential and commercial buildings: contribution to the thermal mass

2022-10-18, Vu, Viet-Anh, Bissonnette, Benoît, Cloutier, Alain, Blanchet, Pierre

This article reports the results of a study carried out to evaluate the influence of wood-cement-steatite partitions on the thermal performance of a small building. The interior walls of two identical 2.0 × 2.5 × 3.0 m experimental wooden frame huts (tiny houses, with one door and one window), designed and built following the National Building Code of Canada, were covered with standard gypsum boards in one case (GB hut) and a combination of gypsum boards and wood-cement-steatite panels in the other case (WCSP hut). The thermal behavior of both huts, located on the campus of Laval University, in Québec (QC), Canada was monitored over a testing period extending from mid-march to the first week of July 2019. Depending on the moment during that period (cold weather, mild weather) and the characteristics being evaluated, the temperature inside the huts was conditioned or not with an electric heater. The following parameters were recorded: outdoor temperature, the temperature inside the two huts, and, when applicable, their electricity consumption. In cold weather, the wood-cement-steatite panels contributed to reducing the electricity consumption by 5.2% over that of the reference GB hut. In mild weather, wood-cement-steatite panels were found to improve the comfort inside the test hut by leveling off the temperature variations, with reductions ranging from 0.3 °C to 3.8 °C. Both the differences in electricity consumption and indoor temperature variations were determined to be statistically significant, with p - values inferior to 0.005. The results generated in this part of the study further strengthen the potential of WCSP as a real alternative to gypsum boards for drywall partitioning in residential and commercial buildings. In addition to their many advantageous constructive properties, such as water resistance, flexural strength, screw withdrawal resistance, and fire resistance, the improvements they could yield in energy efficiency and thermal comfort make it a quite promising partitioning option.

En cours de chargement...
Vignette d'image
PublicationAccès libre

Steatite powder additives in wood-cement drywall particleboards

2020-10-29, Bissonnette, Benoît, Dagenais, Christian, Cloutier, Alain, Vu, Viet-Anh, Blanchet, Pierre

The objective of this study was to develop a new drywall wood-based particleboard as an alternative to gypsum board. Various development iterations have led to the use of wood particles, steatite powder and Portland cement. The resulting outcome shows that screw withdrawal resistance was improved by 37% and bending properties by 69% compared to gypsum board of a similar density (0.68–0.70). The raw surface of the boards is of good quality and comparable to the paper-faced surface of gypsum board. Furthermore, the reaction to fire was evaluated through bench-scale test with a cone calorimeter. The investigated particleboard did not reveal visual signs of combustion after 20 min when exposed to a radiant heat of 50 kW/m2, while burning of the overlay paper of gypsum board occurred at about 57 s, suggesting that wood-cement-steatite powder particleboard could be classified as a quasi non-combustible material.