Personne :
Kapinga Kalala, Iris

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Kapinga Kalala
Prénom
Iris
Affiliation
Département de génie des mines, de la métallurgie et des matériaux, Faculté des sciences et de génie, Université Laval
ISNI
ORCID
Identifiant Canadiana
ncf11869375
person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Caractérisations structurale et mécanique du massif rocheux de la fosse Tiriganiaq du projet Meliadine à l'aide de la modélisation synthétique du massif rocheux
    (2013) Kapinga Kalala, Iris; Grenon, Martin
    Ce mémoire porte sur l’application de la modélisation du massif rocheux synthétique (SRM) à la caractérisation du massif rocheux fracturé de la fosse Tiriganiaq du projet minier Meliadine. Les conditions structurales in-situ ont été représentées à l’aide de la modélisation des systèmes de fractures (FSM). Les résultats ont permis de définir un volume élémentaire représentatif (REV) du massif rocheux égal à 7,5 m x 15 m x 7,5 m. L’approche a également permis de quantifier l’impact de la variation des propriétés géométriques du FSM sur le comportement mécanique du massif. Les analyses paramétriques des propriétés géométriques du SRM font ressortir que le comportement du massif rocheux est particulièrement sensible à une variation de l’intensité des fractures (P32), de l’aire des fractures et du pendage de la foliation. De plus, la résistance en compression uniaxiale est fortement anisotrope.
  • Publication
    Accès libre
    Quantifying the impact of small variations in fracture geometric characteristics on peak rock mass properties at a mining project using a coupled DFN–DEM approach
    (Elsevier, 2014-03-03) Kapinga Kalala, Iris; Grenon, Martin; Bruneau, Geneviève.
    Using field data from Agnico-Eagle’s Meliadine gold project located in Nunavut Territory in northern Canada, a coupled DFN–DEM approach was used to evaluate the rock mass mechanical properties at REV. Variability in the structural data gathered on site and the variability associated with the stochastic modeling process have an impact on discrete fracture model (DFN) properties. Through a sensitivity analysis, this paper assesses the influence of a variation in the DFN model input parameters’ values on the rock mass peak properties – uniaxial compressive strength, Young modulus and Poisson ratio. The results not only highlight the possibilities associated with DFN–DEM modeling in characterizing rock mass properties at the engineering scale, they also provide a systematic way to assess the critical structural parameters controlling the rock mass properties.
  • Publication
    Restreint
    Assessing rock mass UCS anisotropy using a coupled DFN-DEM approach at a surface mining project in Artic Canada
    (2014-10-01) Kapinga Kalala, Iris; Grenon, Martin; Bruneau, Geneviève.
    A coupled DFN-DEM approach was used to evaluate the anisotropy of rock mass mechanical compressive strength (UCS) at Representative Elemental Volume (REV) at the feasibility stage of an open pit mining project located in Nunavut Territory in northern Canada. The paper presents modelling work performed to define the rock mass UCS based on field data and on laboratory testing results. In particular, the influence of the in-situ rock mass structural properties variations on the rock mass UCS is studied. To begin with, a discussion is presented on the difficulty to account for the anisotropy of the rock mass UCS at engineering scale. Coupled DFN-DEM modelling was shown to be useful although still rarely used mainly due to computing time limitation. In this paper, the modelling workflow is outlined. DFN modelling results are presented - several DFNs were modelled to fully represent the spectrum of possible structural regimes at the site. The DFN-DEM calibration process for simulating rock mass samples at REV size is also presented. DFN-DEM models were created for all generated DFNs – representing the observed spectrum of the structural rock mass properties. The rock mass UCS was evaluated for all samples and the anisotropy of the rock mass UCS was then calculated. The results suggest that for this mining site, the rock mass at REV size is strongly anisotropic. Furthermore, they suggest that the rock mass structural variability significantly affects the rock mass anisotropy. The results not only highlight the possibilities associated with DFNDEM modelling in characterizing rock mass anisotropy at the engineering scale, they also provide a systematic way to assess the variability in rock mass properties anisotropy for engineering works.