Personne : Ethier, Christian
En cours de chargement...
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Ethier
Prénom
Christian
Affiliation
Université Laval. Département de psychiatrie et de neurosciences
ISNI
ORCID
Identifiant Canadiana
ncf11852847
person.page.name
2 Résultats
Résultats de recherche
Voici les éléments 1 - 2 sur 2
Publication Restreint A 0.13μm CMOS SoC for simultaneous multichannel optogenetics and electrophysiological brain recording(IEEE, 2018-03-12) Gagnon-Turcotte, Gabriel; Ethier, Christian; De Koninck, Yves; Gosselin, BenoitOptogenetics and multi-unit electrophysiological recording are state-of-the-art approaches in neuroscience to observe neural microcircuits in vivo [1]. Thereby, brain-implantable devices incorporating optical stimulation and low-noise data acquisition means have been designed based on custom integrated circuits (IC) to study the brain of small freely behaving laboratory animals. However, no existing IC provides multichannel optogenetic photo-stimulation along with multiunit electrophysiological recording capability within the same die [2-5]. They also lack critical features: they are not multichannel and/or do not include an ADC [6], or they address only one signal modality [5-6], i.e., either local field potentials (LFP) or action potentials (AP). In this paper, we report an IC for simultaneous multichannel optogenetics and electrophysiological recording addressing both LFP and AP signals all at once. This 0.13μm CMOS chip, which includes 4/10 stimulation/recording channels, is enclosed inside a small wireless optogenetic platform, and is demonstrated with simultaneous in vivo optical stimulation and electrophysiological recordings with a virally mediated Channelrhodopsin-2 (ChR2) rat.Publication Restreint A 0.13- μm CMOS SoC for simultaneous multichannel optogenetics and neural recording(Institute of Electrical and Electronics Engineers, 2018-09-02) Gagnon-Turcotte, Gabriel; Noormohammadi Khiarak, Mehdi; Ethier, Christian; De Koninck, Yves; Gosselin, BenoitThis paper presents a 0.13-μm CMOS system-onchip (SoC) for simultaneous multichannel optogenetics and multichannel neural recording in freely moving laboratory animals. This fully integrated system provides 10 multimodal recording channels with analog-to-digital conversion and a four- channel LED driver circuit for optogenetic stimulation. The bio-amplifier design includes a programmable bandwidth (BW) (0.5 Hz–7 kHz) to collect either the action potentials (APs) and/or the local field potentials (LFPs) and has a noise efficiency factor (NEF) of 2.30 for an input-referred noise of 3.2 μVrms within a BW of 10–7 kHz. The low-power delta–sigma () MASH 1-1-1 analog-to-digital converter (ADC) is designed to work at low oversampling ratios (OSRs) (≤50) and has an effective number of bits (ENOB) of 9.75 bits at an OSR of 25 (BW of 10 kHz). The utilization of a ADC is the key to address the flexibility needed to address different noise versus power consumption tradeoff of various experimental settings. It leverages a new technique that reduces its size by subtracting the output of each branch in the digital domain, instead of in the analog domain as done conventionally. The ADC is followed by an on-chip fourthorder cascaded integrator-comb (CIC4) decimation filter (DF). A whole recording channel, including the bio-amplifier, the MASH 1-1-1, and the DF consumes 11.2 μW. Optical stimulation is performed with an LED driver using a regulated cascode current source with feedback that can accommodate a wide range of LED parameters and battery voltages. The SoC is validated in vivo within a wireless experimental platform in both the ventral posteromedial nucleus (VPM) and cerebral motor cortex brain regions of a virally mediated Channelrhodopsin-2. (ChR2) rat.