Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Asselin, Jérémie

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Asselin

Prénom

Jérémie

Affiliation

Université Laval. Département de chimie

ISNI

ORCID

Identifiant Canadiana

ncf11891716

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
En cours de chargement...
Vignette d'image
PublicationAccès libre

Développement et application de nano-architectures cœur-coquille fluorescentes pour la mesure du pH

2018, Asselin, Jérémie, Boudreau, Denis

Les variations ioniques entrent en jeu dans presque tous les processus métaboliques cellulaires et bactériens. Par le fait même, leur dysfonctionnement induit une modification des concentrations attendues et provoque des maladies graves à même la solution physiologique ou le tissu biologique affecté. Parmi ces différents facteurs, le pH est un paramètre-clé régissant plusieurs activités comme la capacité enzymatique, la conformation tridimensionnelle des protéines et l’activation de certains transporteurs membranaires. Lors de ces travaux de doctorat, des nanoparticules fluorescentes sensibles au pH ont été développées et appliquées sous la forme d’un substrat lamellaire implantable directement dans l’environnement de culture de cellules. Ce nouvel outil analytique adapté pour la recherche biomédicale in vitro offre donc la possibilité de visualiser le pH en microscopie de façon quantitative avec une résolution spatiale (~1 μm) et temporelle (<300 ms). Pour ce faire, les nano-capteurs ont été optimisés dans le cadre d’une étude paramétrique structurale. Ces nanoparticules comportent un coeur métallique offrant une activité plasmonique qui permet d’exalter la fluorescence de chromophores incorporés dans une coquille de silice. La taille, la distance d’espacement, et le degré de recouvrement entre la bande plasmonique et le spectre d’excitation/émission de différents fluorophores ont donc été ajustés afin de rentabiliser la portée de l’effet amplificateur de ces architectures concentriques. Comme la chimie d’encapsulation des molécules sensibles est généralisable pour un grand nombre de précurseurs silanes, une démonstration a été faite pour un concept de nanoparticules multicouches permettant simultanément la détection multiélémentaire de la concentration en protons et en ions halogénure (Cl-, Br-, I-), et aussi la correction de ces signaux par rapport à une référence interne. La normalisation ratiométrique permet de compenser pour les fluctuations et erreurs expérimentales issues notamment de la concentration des capteurs, du photoblanchiment et de l’intensité de la source en fonction du temps. Finalement, cette stratégie a été appliquée dans une étude spectroscopique utilisant la fluorescéine dans des nanoparticules coeur-coquille en tant que rapporteur ratiométrique pour la mesure quantitative du pH dans des cultures cellulaires. Pour ce faire, les nano-architectures ont été fonctionnalisées, puis confinées en surface d’un substrat de silice par voie de couplage clic complémentaire. Ces lamelles de microscopie à valeur ajoutée offrent donc une surface adaptée pour la culture de cellules excitables comme les fibroblastes cardiaques et les neurones, mais aussi pour la croissance bactérienne de biofilms et l’analyse multiphase en microfluidique.