Personne :
Anney, Princia

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Anney
Prénom
Princia
Affiliation
Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval
ISNI
ORCID
Identifiant Canadiana
ncf11931131
person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Utilisation du long ARN non codant conservé Tuna pour comprendre la biologie des IncRNAs
    (2019) Anney, Princia; Hussein, Samer
    De récentes données suggèrent un rôle clé des longs ARNs non codants (lncRNAs) dans le développement et l’apparition de certaines maladies. Les lncRNAs se sont avérés difficiles à étudier en raison de leur faible niveau d’expression souvent tissu-spécifique, du manque de conservation de leur séquence, et du manque d’outils d’analyse spécifiques. Nous avons émis l’hypothèse que les méthodes d’étude des ARNs messagers peuvent être adaptées aux lncRNAs. Pour valider cette hypothèse, nos objectifs sont : 1-l’utilisation des nouvelles approches dérivées du système CRISPR/Cas9 pour activer et inhiber l’expression génique et 2-l’utilisation des méthodes conventionnelles de surexpression pour étudier les lncRNAs. Dans le cadre de cette étude, nous nous sommes concentrés sur un nouveau lncRNA, appelé Tuna (Tcl1 Upstream Neuron-Associated lncRNA). Ce lncRNA est nécessaire au maintien des cellules souches embryonnaires, mais aussi à leur différenciation vers le lignage neural. Résultats : la nouvelle approche CRISPR-a/i permet d’activer/inhiber le promoteur de Tuna et de réguler l’expression endogène de celui-ci. Ce système s’étant révélé efficace pour Tuna, cela suggère qu’il peut être appliqué à l’étude d’autres lncRNAs. D’autre part, la particularité de cet ARN est qu’il contient une région conservée entre les espèces d’environ 200 nucléotides, correspondant à un ORF pour un peptide de 48 acides aminés. En utilisant des méthodes conventionnelles de marquage par FLAG, on démontre que Tuna code pour ce peptide. Par ailleurs, en supprimant un site de liaison à la protéine HUR dans la région 3’UTR, on altère l’expression du peptide. Cela suggère que ce site est important pour la régulation de la traduction du peptide encodé par Tuna. En conclusion, nos résultats montrent que certaines méthodes d’étude des ARNs messagers sont transposables aux lncRNAs. Cependant, du fait des caractéristiques propres à ces derniers, d’autres approches sont à envisager pour mieux saisir leurs mécanismes. En perspective, ces méthodes vont permettre de mieux comprendre la fonction de Tuna dans les différents états cellulaires où il est exprimé.