Personne :
Gagnon, Denis

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Gagnon
Prénom
Denis
Affiliation
Département de physique, de génie physique et d'optique, Faculté des sciences et de génie, Université Laval
ISNI
ORCID
Identifiant Canadiana
ncf11904608
person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 14
  • Publication
    Accès libre
    Modélisation ondulatoire de structures optiques résonantes : application aux microcavités diélectriques bidimensionnelles
    (2011) Gagnon, Denis; Dubé, Louis J.
    L'utilité des microcavités diélectriques a été démontrée dans le cadre de plusieurs applications technologiques, de la biodétection à l'informatique quantique en passant par le développement de nouvelles sources laser. Les ingrédients nécessaires à ces multiples applications sont principalement une concentration énergétique élevée et un haut facteur de qualité (temps de confinement très long) menant à un recyclage photonique efficace. Les cavités en forme de microdisque (rayon de 10-100 pm) sont d'un intérêt particulier comme structure de base en raison de leur géométrie quasi-bidimensionnelle et de la facilité associée à leur fabrication et leur intégration. Ce projet de maîtrise s'articule autour de deux types de méthodes numériques visant à modéliser des structures optiques bidimensionnelles, plus particulièrement des microcavités diélectriques. D'abord, un algorithme de modélisation par éléments de frontière est mis en oeuvre afin de déterminer les modes résonants de cavités et le facteur de qualité associé. La méthode est généralisée à un nombre arbitraire de domaines diélectriques simplement ou multiplement connexes. Le cas important de la cavité annulaire, une cavité en microdisque dans laquelle un défaut circulaire est inscrit, est traité en détail. Cette géométrie particulière permet d'accéder à une plus grande richesse de profils d'émission tout en conservant le haut facteur de confinement propre aux cavités symétriques. Les résultats obtenus s'inscrivent spécifiquement dans le cadre du développement de nouveaux microlasers directionnels. Deuxièmement, un modèle numérique par éléments finis est développé afin de rendre compte du couplage evanescent entre une microcavité et un guide d'ondes rectangulaire. Cette étude vise à optimiser les paramètres géométriques d'un dispositif d'optique intégrée pouvant être utilisé dans le cadre de la biodétection.
  • Publication
    Accès libre
    Generalized Lorenz-Mie theory : application to scattering and resonances of photonic complexes
    (2014) Gagnon, Denis; Dubé, Louis J.
    Les structures photoniques complexes permettent de façonner la propagation lumineuse à l’échelle de la longueur d’onde au moyen de processus de diffusion et d’interférence. Cette fonctionnalité à l’échelle nanoscopique ouvre la voie à de multiples applications, allant des communications optiques aux biosenseurs. Cette thèse porte principalement sur la modélisation numérique de structures photoniques complexes constituées d’arrangements bidimensionnels de cylindres diélectriques. Deux applications sont privilégiées, soit la conception de dispositifs basés sur des cristaux photoniques pour la manipulation de faisceaux, de même que la réalisation de sources lasers compactes basées sur des molécules photoniques. Ces structures optiques peuvent être analysées au moyen de la théorie de Lorenz-Mie généralisée, une méthode numérique permettant d’exploiter la symétrie cylindrique des diffuseurs sous-jacents. Cette dissertation débute par une description de la théorie de Lorenz-Mie généralisée, obtenue des équations de Maxwell de l’électromagnétisme. D’autres outils théoriques utiles sont également présentés, soit une nouvelle formulation des équations de Maxwell-Bloch pour la modélisation de milieux actifs appelée SALT (steady state ab initio laser theory). Une description sommaire des algorithmes d’optimisation dits métaheuristiques conclut le matériel introductif de la thèse. Nous présentons ensuite la conception et l’optimisation de dispositifs intégrés permettant la génération de faisceaux d’amplitude, de phase et de degré de polarisation contrôlés. Le problème d’optimisation combinatoire associé est solutionné numériquement au moyen de deux métaheuristiques, l’algorithme génétique et la recherche tabou. Une étude théorique des propriétés de micro-lasers basés sur des molécules photoniques – constituées d’un arrangement simple de cylindres actifs – est finalement présentée. En combinant la théorie de Lorenz-Mie et SALT, nous démontrons que les propriétés physiques de ces lasers, plus spécifiquement leur seuil, leur spectre et leur profil d’émission, peuvent être affectés de façon nontriviale par les paramètres du milieu actif sous-jacent. Cette conclusion est hors d’atteinte de l’approche établie qui consiste à calculer les étatsméta-stables de l’équation de Helmholtz et leur facteur de qualité. Une perspective sur la modélisation de milieux photoniques désordonnés conclut cette dissertation.
  • Publication
    Restreint
    Beam shaping using genetically optimized two-dimensional photonic crystals
    (Optical Society of America, 2012-11-29) Gagnon, Denis; Dubé, Louis J.; Dumont, Joey
    We propose the use of two-dimensional (2D) photonic crystals (PhCs) with engineered defects for the generation of an arbitrary-profile beam from a focused input beam. The cylindrical harmonics expansion of complex-source beams is derived and used to compute the scattered wave function of a 2D PhC via the multiple scattering method. The beam shaping problem is then solved using a genetic algorithm. We illustrate our procedure by generating different orders of Hermite-Gauss profiles, while maintaining reasonable losses and tolerance to variations in the input beam and the slab refractive index.
  • Publication
    Restreint
    Ab initio investigation of lasing thresholds in photonic molecules
    (Optical Society of America, 2014-07-17) Gagnon, Denis; Déziel, Jean-Luc; Dubé, Louis J.; Dumont, Joey
    We investigate lasing thresholds in a representative photonic molecule composed of two coupled active cylinders of slightly different radii. Specifically, we use the recently formulated steady-state ab initio laser theory (SALT) to assess the effect of the underlying gain transition on lasing frequencies and thresholds. We find that the order in which modes lase can be modified by choosing suitable combinations of the gain center frequency and linewidth, a result that cannot be obtained using the conventional approach of quasi-bound modes. The impact of the gain transition center on the lasing frequencies, the frequency pulling effect, is also quantified
  • Publication
    Restreint
    S and Q matrices reloaded : applications to open, inhomogeneous, and complex cavities
    (IEEE, 2013-06-23) Gagnon, Denis; Dubé, Louis J.; Painchaud-April, Guillaume; Dumont, Joey
    We present a versatile numerical algorithm for computing resonances of open dielectric cavities. The emphasis is on the generality of the system's configuration, i.e. the geometry of the (main) cavity (and possible inclusions) and the internal and external dielectric media (homogeneous and inhomogeneous). The method is based on a scattering formalism to obtain the position and width of the (quasi)-eigenmodes. The core of the method lies in the scattering S-matrix and its associated delay Q-matrix which contain all the relevant information of the corresponding scattering experiment. For instance, the electromagnetic near- and far-fields are readily extracted. The flexibility of the propagation method is displayed for a selected system.
  • Publication
    Restreint
    Coherent beam shaping using two-dimensional photonic crystals
    (IEEE, 2013-06-23) Gagnon, Denis; Dubé, Louis J.; Dumont, Joey
    Optical devices based on photonic crystals such as waveguides, lenses and beam-shapers, have received considerable theoretical and experimental attention in recent years. The production of these devices has been facilitated by the wide availability of silicon-on-insulator fabrication techniques. In this theoretical work, we show the possibility to design a coherent PhC-based beam-shaper. The basic photonic geometry used is a 2D square lattice of air holes in a high-index dielectric core. We formulate the beam shaping problem in terms of objective functions related to the amplitude and phase profile of the generated beam. We then use a parallel tabu search algorithm to minimize the two objectives simultaneously. Our results show that optimization of several attributes in integrated photonics design is well within reach of current algorithms.
  • Publication
    Restreint
    Lorenz-Mie theory for 2D scattering and resonance calculations
    (Bristol Institute of Physics Publishing, 2015-09-22) Gagnon, Denis; Dubé, Louis J.
    This PhD tutorial is concerned with a description of the two-dimensional generalized Lorenz–Mie theory (2D-GLMT), a well-established numerical method used to compute the interaction of light with arrays of cylindrical scatterers. This theory is based on the method of separation of variables and the application of an addition theorem for cylindrical functions. The purpose of this tutorial is to assemble the practical tools necessary to implement the 2D-GLMT method for the computation of scattering by passive scatterers or of resonances in optically active media. The first part contains a derivation of the vector and scalar Helmholtz equations for 2D geometries, starting from Maxwell's equations. Optically active media are included in 2D-GLMT using a recent stationary formulation of the Maxwell–Bloch equations called steady-state ab initio laser theory (SALT), which introduces new classes of solutions useful for resonance computations. Following these preliminaries, a detailed description of 2D-GLMT is presented. The emphasis is placed on the derivation of beam-shape coefficients for scattering computations, as well as the computation of resonant modes using a combination of 2D-GLMT and SALT. The final section contains several numerical examples illustrating the full potential of 2D-GLMT for scattering and resonance computations. These examples, drawn from the literature, include the design of integrated polarization filters and the computation of optical modes of photonic crystal cavities and random lasers
  • Publication
    Restreint
    Phase space engineering in optical microcavities II. Controlling the far-field
    (IEEE, 2010-06-16) Gagnon, Denis; Dubé, Louis J.; Painchaud-April, Guillaume; Poirier, Julien
    Optical microcavities support Whispering Gallery Modes (WGMs) with a very high quality factor Q. However, WGMs typically display a far-field isotropic emission profile and modifying this far-field profile without spoiling the associated high Q remains a challenge. Using a 2D annular cavity, we present a procedure capable to achieve these two apparently conflicting goals. With the correspondence between the classical and the wave picture, properties of the classical phase space shed some light on the characteristics of the wave dynamics. Specifically, the annular cavity has a well separated mixed phase space, a characteristic that proves to be of crucial importance in the emission properties of WGMs. While the onset of directionality in the far-field may be achieved through parametric deformation [1] of the distance cavity-hole centers, d , this contribution presents a method to control the emission profile via a second parameter, the hole radius r0. The influence of the classical dynamics to control and predict the field emission will be demonstrated.
  • Publication
    Restreint
    Optimization of integrated polarization filters
    (Optical Society, 2014-10-01) Gagnon, Denis; Déziel, Jean-Luc; Dubé, Louis J.; Dumont, Joey
    This study reports on the design of small footprint, integrated polarization filters based on engineered photonic lattices. Using a rods-in-air lattice as a basis for a TE filter and a holes-in-slab lattice for the analogous TM filter, we are able to maximize the degree of polarization of the output beams up to 98% with a transmission efficiency greater than 75%. The proposed designs allow not only for logical polarization filtering, but can also be tailored to output an arbitrary transverse beam profile. The lattice configurations are found using a recently proposed parallel tabu search algorithm for combinatorial optimization problems in integrated photonics.
  • Publication
    Restreint
    Phase space engineering in optical microcavities I : preserving near-field uniformity while inducing far-field directionality
    (2010-08-16) Gagnon, Denis; Dubé, Louis J.; Painchaud-April, Guillaume; Poirier, Julien
    Optical microcavities have received much attention over the last decade from different research fields ranging from fundamental issues of cavity QED to specific applications such as microlasers and bio-sensors. A major issue in the latter applications is the difficulty to obtain directional emission of light in the far-field while keeping high energy densities inside the cavity (i.e. high quality factor). To improve our understanding of these systems, we have studied the annular cavity (a dielectric disk with a circular hole), where the distance cavity-hole centers d is used as a parameter to alter the properties of cavity resonances. We present results showing how one can affect the directionality of the far-field while preserving the uniformity (hence the quality factor) of the near-field simply by increasing the value of d. Interestingly, the transition between a uniform near- and far-field to a uniform near- and directional far-field is rather abrupt. We can explain this behavior quite nicely with a simple model, supported by full numerical calculations, and we predict that the effect will also be found in a large class of eigenmodes of the cavity