Personne : Gingras, Jonathan
En cours de chargement...
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Gingras
Prénom
Jonathan
Affiliation
Université Laval. Département d'informatique et de génie logiciel
ISNI
ORCID
Identifiant Canadiana
ncf13671132
person.page.name
1 Résultats
Résultats de recherche
Voici les éléments 1 - 1 sur 1
Publication Accès libre Empirical analysis of imbalance countering strategies in binary classification(2020) Gingras, Jonathan; Laviolette, François; Marchand, MarioDe nos jours, les algorithmes de classification binaire sont utilisés dans des tâches touchant plusieurs champs d’applications comme les fraudes en-ligne, le dépistage bio-médical ou bien la toxicité en-ligne. Malgré le nombre de données qui est souvent disponible pour ces applications, qui viennent habituellement de source réelles, une particularité y est fréquemment observée: la représentation débalancée des classes. Cette imbalance demeure un problème d’envergure pour les algorithmes de classification, car la vaste majorité d’entre eux ne sont pas conçus avec cette représentation inégale à l’esprit. De plus, dans les paramètres expérimentaux, les données sur lesquelles ils sont appliqués sont souvent bien balancées, à cause de la finalité-même de ces expérimentations. Dans le présent mémoire, une revue des stratégies et techniques existantes pour contrer l’imbalance binaire est proposée, dans laquelle un point de vue par modification de données ainsi qu’un point de vue par modification algorithmique seront adressés. Le premier sujet des présents travaux consiste en les approches de pré-traitement et leurs effets sur les métriques de classification, dans lequel des expérimentations contrôlées (présentant différents niveaux de débalancement) et des applications d’entreprises sont présentées et analysées. Le second sujet consiste en le paradigme sensible-au-coût appliqué à l’optimisation directe de la métrique de la F-mesure en utilisant un réseau de neurones, dans lequel des expérimentations sur un jeu de données très débalancé sont présentées et discutées, le tout accompagné d’une comparaison avec différents paramètres usuels. À la lecture du présent document, le lecteur aura une bonne idée des techniques de prétraitement existantes et ce qu’on peut en retirer d’un point de vue expérimental selon des ensembles de données variés. Également, l’application du paradigme sensible-au-coût par optimisation de la F-mesure donnera un aperçu positif quant au point de vue algorithmique dans un contexte de données très débalancées.