Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Teukam Dabou, Raoult

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Teukam Dabou

Prénom

Raoult

Affiliation

Université Laval. Département de génie électrique et de génie informatique

ISNI

ORCID

Identifiant Canadiana

ncf13700735

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationAccès libre
    Prédiction de l'instabilité dynamique des réseaux électriques par apprentissage supervisé des signaux de réponses post-contingence sur des dictionnaires surcomplets
    (2022) Teukam Dabou, Raoult; Kamwa, Innocent
    Ces dernières décennies, l'intégration aux réseaux électriques de capteurs intelligents incorporant la mesure synchronisée des phaseurs a contribué à enrichir considérablement les bases de données de surveillance en temps réel de la stabilité des réseaux électriques. En parallèle, la lutte aux changements climatiques s'est accompagnée d'un déploiement généralisé des sources d'énergies renouvelables dont l'intermittence de la production et le déficit d'inertie dû à l'interface de celle-ci par l'électronique de puissance, contribuent à augmenter les risques d'instabilité à la suite de contingences de réseau. Dans ce contexte, nous proposons d'appliquer aux données de synchrophaseurs de nouvelles approches d'intelligence de données inspirées par l'analyse massive des séries chronologiques et l'apprentissage sur des dictionnaires supervisés, permettant d'extraire des centaines d'attributs décrivant concisément les estimations d'état dynamique des générateurs de réseaux électriques. La mise en évidence d'une signification physique de ces attributs permet ensuite une classification de la stabilité dynamique qui s'éloigne de ce fait des boîtes noires produites par un apprentissage en profondeur « à l'aveugle » des séries chronologiques, pour évoluer vers une approche transparente plus adaptée à la salle de conduite des réseaux et acceptable pour les ingénieurs d'exploitation. Cette approche d'apprentissage machine « interprétable » par les humains, débouche de surcroît sur une détection fiable, utilisant de courtes fenêtres de données de vitesses d'alternateurs directement mesurées ou reconstituées par estimation d'état dynamique à partir de l'instant d'élimination du défaut, pour détecter toute instabilité subséquente, avec un temps de préemption suffisant pour activer des contremesures permettant de sauvegarder la stabilité du réseau et ainsi prévenir les pannes majeures. Notre travail aborde l'exploitation de cette nouvelle niche d'information par deux approches complémentaires d'intelligence des données : 1) une analyse non parcimonieuse d'une base d'attributs se chiffrant par centaines, calculés automatiquement par l'analyse numérique massive des séries chronologiques de signaux de réponses post-contingence des générateurs; et 2) une analyse parcimonieuse exploitant l'apprentissage supervisée de grands dictionnaires surcomplets pour habiliter une prédiction de l'instabilité sur de courtes fenêtres de données avec une représentation vectorielle creuse (contenant un grand nombre de zéros) et donc numériquement très efficiente en plus de l'interprétabilité inhérente des atomes constituant les dictionnaires. Au niveau méthodologique, l'approche non parcimonieuse vise à implémenter plusieurs méthodes analytiques combinées (notamment la transformée de Fourier, la transformée en ondelette, la méthode de Welch, la méthode de périodogramme et les exposants de Lyapunov) pour extraire du signal de réponse de chaque générateur des centaines d'attributs labellisés et servant à construire un espace physique d'indicateurs de stabilité à haute dimension (HDSI). Ceux-ci sont ensuite utilisés pour développer les prédicteurs de stabilité sur la base d'algorithmes standard de machine learning, par exemple le convolutional neural network (CNN), long short-term memory (LSTM), support vector machine (SVM), AdaBoost ou les forêts aléatoires. L'approche parcimonieuse implémentée consiste à développer deux techniques complémentaires : 1) un dictionnaire d'apprentissage supervisé joint (SLOD) au classificateur et 2) vingt dictionnaires d'apprentissage séparés des signaux associés aux cas stable/instable. Alors que le SLOD utilise des dictionnaires adaptatifs inspirés des données mesurées et apprises hors-ligne, la deuxième approche utilise des dictionnaires fixes pour reconstruire séparément les signaux des classes stables et instables. Dans les deux cas, l'étape finale consiste à identifier automatiquement en temps réel, la classe d'appartenance d'une réponse par reconstruction des signaux associés à partir des dictionnaires appris hors-ligne. L'analyse parcimonieuse des réponses des générateurs sur un dictionnaire d'apprentissage adaptatif joint au classificateur a été implémenté à partir de l'algorithme K-singular value de composition (KSVD) couplé à l'orthogonal matching pursuit (OMP), afin de reconstruire et prédire la stabilité dynamique des réseaux électriques. De plus, vingt décompositions parcimonieuses des signaux sur des dictionnaires fixes (simples et hybrides) ont permis de développer des classificateurs prédisant chaque classe séparément sur la base de la transformée en cosinus discrète (DCT), en sinus discrète (DST), en ondelette (DWT), de la transformée de Haar (DHT), et le dictionnaire de Dirac (DI) couplés à l'orthogonal matching pursuit (OMP). Cette étude démontre que la décomposition parcimonieuse sur un dictionnaire adaptatif joint au classificateur offre une performance proche de l'idéal (c'est-à-dire : 99,99 % précision, 99,99 % sécurité et 99,99 % fiabilité) de loin supérieure à celle d'un classificateur à reconstruction de signaux basée sur les vingt dictionnaires fixes ou adaptatifs séparés, et les classificateurs basés sur les moteurs de machine learning (SVM, ANN, DT, RF, AdaBoost, CNN et LSTM) implémentés à partir des indices HDSI extraits de la base de données des vitesses des rotors des réseaux IEEE 2 area 4 machines, IEEE 39 -bus et IEEE 68 -bus. Toutefois, le temps de resimulation (replay) en temps réel des dictionnaires fixes/adaptatifs séparés est nettement inférieur (de 30-40%) à celui observé pour le dictionnaire adaptatif à classificateur joint / SLOD, et les algorithmes modernes de machine learning utilisant les attributs de type HDSI comme intrants.