Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Giasson, Claude-J.

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Giasson

Prénom

Claude-J.

Affiliation

Laboratoire d'organogénèse expérimentale (LOEX) du Centre de recherche du Centre hospitalier affilié universitaire de Québec, Université Laval

ISNI

ORCID

Identifiant Canadiana

ncf11888655

person.page.name

Résultats de recherche

Voici les éléments 1 - 4 sur 4
  • PublicationRestreint
    Tissue Engineering of Cornea
    (Marcel Dekker, 2004-06-23) Giasson, Claude-J.; Guérin, Sylvain; Salesse, Christian; Germain, Lucie; Auger, François A.; Carrier, Patrick
    The cornea is the transparent barrier between the eye and the environment. Tissue-engineered corneas are currently developed to replace wounded or diseased corneas. Various experimental applications are also foreseen for these tissues reconstructed in vitro by tissue engineering. This article covers the first human corneas reconstructed by tissue engineering from normal human cells and the different models used for the production of human and animal corneas in vitro. Corneal injury and the activation of the complex wound«hea]ing mechanisms are also addressed. Finally, we will attempt to provide the reader with a brief look toward the future of corneal tissue engineering, including the challenges that lie ahead as well as the potential experimental and clinical applications of this field.
  • PublicationRestreint
    Tissue engineering of human cornea
    (CRC Press, 2014-03-27) Guillemette, Maxime.; Giasson, Claude-J.; Guérin, Sylvain; Germain, Lucie; Auger, François A.; Gaudreault, Manon.; Proulx, Stéphanie; Carrier, Patrick; Chirila, Traian
    The cornea is a well-organized tissue composed of three cell types (epithelial, stromal and endothelial cells), each having an important role for its functionality. This chapter will address different tissue engineering approaches to the reconstruction of either partial or full-thickness living corneal substitutes that can be used either as in vitro models for woundhealing studies, or in vivo, eventually replacing the donor cornea for transplantation in humans. Isolation of the proper cells, followed by appropriate culture conditions, and assembly into a three-dimensional tissue construct, are the first steps required for producing a functional corneal substitute.
  • PublicationAccès libre
    Characterization of wound reepithelialization using a new human tissue–engineered corneal wound healing model
    (Association for Research in Vision and Ophthalmology, 2008-04-01) Giasson, Claude-J.; Guérin, Sylvain; Germain, Lucie; Giroux-Talbot, Mariève; Auger, François A.; Carrier, Patrick; Deschambeault, Alexandre
    Purpose. The reepithelialization of the corneal surface is an important process for restoring the imaging properties of this tissue. The purpose of the present study was to characterize and validate a new human in vitro three-dimensional corneal wound healing model by studying the expression of basement membrane components and integrin subunits that play important roles during epithelial cell migration and to verify whether the presence of exogenous factors could accelerate the reepithelialization. Methods. Tissue-engineered human cornea was wounded with a 6-mm biopsy punch, and the reepithelialization from the surrounding margins was studied. Biopsy samples of the reepithelialized surface were harvested 3 days after wounding and were processed for histologic, electron microscopic, and immunofluorescence analyses. The effects of fibrin and epithelial growth factor (EGF) on wound reepithelialization were also studied. Results. Results demonstrated that this in vitro model allowed the migration of human corneal epithelial cells on a natural extracellular matrix. During reepithelialization, epithelial cell migration followed a consistent wavelike pattern similar to that reported for human corneal wound healing in vivo. This model showed a histologic appearance similar to that of native tissue as well as expression and modulation of basement membrane components and the integrin subunits known to be main actors during the wound healing process. It also allowed quantification of the reepithelialization rate, which was significantly accelerated in the presence of fibrin or EGF. The results indicated that αvβ6 integrin expression was increased in the migrating epithelial cells compared with the surrounding corneal tissue. Conclusions. The similarity observed with the in vivo wound healing process supports the use of this tissue-engineered model for investigating the basic mechanisms involved in corneal reepithelialization. Moreover, this model may also be used as a tool to screen agents that affect reepithelialization or to evaluate the effect of growth factors before animal testing.
  • PublicationAccès libre
    Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types
    (Éditeur non identifié, 2010-10-29) Giasson, Claude-J.; Guérin, Sylvain; Germain, Lucie; Audet, Caroline; Auger, François A.; Uwamaliya, Jeanne d'Arc; Proulx, Stéphanie; Carrier, Patrick; Deschambeault, Alexandre
    Purpose: The purpose of this study was to produce and characterize human tissue-engineered corneas reconstructed using all three corneal cell types (epithelial, stromal, and endothelial cells) by the self-assembly approach. Methods: Fibroblasts cultured in medium containing serum and ascorbic acid secreted their own extracellular matrix and formed sheets that were superposed to reconstruct a stromal tissue. Endothelial and epithelial cells were seeded on each side of the reconstructed stroma. After culturing at the air-liquid interface, the engineered corneas were fixed for histology and transmission electron microscopy (TEM). Immunofluorescence labeling of epithelial keratins, basement membrane components, Na+/K+-ATPase α1, and collagen type I was also performed. Results: Epithelial and endothelial cells adhered to the reconstructed stroma. After 10 days at the air-liquid interface, the corneal epithelial cells stratified (4 to 5 cell layers) and differentiated into well defined basal and wing cells that also expressed Na+/K+-ATPase α1 protein, keratin 3/12, and basic keratins. Basal epithelial cells from the reconstructed epithelium formed many hemidesmosomes and secreted a well defined basement membrane rich in laminin V and collagen VII. Endothelial cells formed a monolayer of tightly-packed cells and also expressed the function related protein Na+/K+-ATPase α1. Conclusions: This study demonstrates the feasibility of producing a complete tissue-engineered human cornea, similar to native corneas, using untransformed fibroblasts, epithelial and endothelial cells, without the need for exogenous biomaterial.