Personne :
Chevarin, Francois

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Chevarin
Prénom
Francois
Affiliation
Faculté des sciences et de génie, Université Laval
ISNI
ORCID
Identifiant Canadiana
ncf11889096
person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Relation entre les propriétés physico-chimiques de l'anode en carbone et sa vitesse de réaction sous CO2
    (2016) Chevarin, Francois; Darvishi Alamdari, Houshang
    L’aluminium de première fusion est, de nos jours, produit principalement par l’électrolyse de l’alumine à 960 °C appelé procédé Hall-Héroult. L’électrolyse est réalisée par le passage du courant électrique entre des anodes en carbone et une cathode en carbone par l’intermédiaire d’un électrolyte (cryolithe : Na3AlF6). Ces anodes sont composées de coke de pétrole et d’anodes usagées (mégots) collés ensemble par du pitch (brai de houille). Dans ce procédé, les anodes sont attaquées lors de l’électrolyse mais également en raison de réactions parasites avec l’air et le CO2 provoquant une surconsommation de ces anodes et créant de la charbonnaille. La charbonnaille est définie par l’ensemble des particules d’anode tombant dans le bain électrolytique et générant de nombreux problèmes électriques. Ce projet de recherche porte sur la compréhension de la consommation (réactivité) des anodes en carbone, utilisées dans le procédé électrochimique, par le CO2 à 960 °C. Dans le but de mieux comprendre cette consommation des anodes, l’étude de la réactivité est divisée en trois sections principales; la réaction du CO2 avec l’anode dite de Boudouard en régime chimique, la réactivité avec de grosses particules et la proposition d’une nouvelle représentation de l’anode. La réaction de Boudouard (CO2 + C → 2 CO) sous régime chimique est contrôlée par les propriétés intrinsèques du matériau carboné (impuretés et niveau de graphitisation). Dans ce projet, les paramètres (taille des particules, masse initiale, débit) du régime chimique, c'est-à-dire sans limitation du transport de masse, ont été déterminés pour des particules d’anode broyées. Le test de réactivité utilisé pour ces particules est un réacteur thermogravimétrique (TGA). La vitesse de réaction apparente obtenue à partir des données brutes du TGA permet d’évaluer la réactivité de l’anode en fonction du pourcentage de gazéification. Les conditions obtenues sont une masse initiale de 2 mg, un temps de broyage des particules de 10 minutes, un débit de 100 ml/min de CO2 et une température de 960 °C. Avec une préparation similaire à l’échantillon d’anode, des particules cuites provenant de chaque constituant d’une anode (coke, pitch et mégot) ont été placés dans le TGA et leur vitesse de réaction apparente a été mesurée. La détermination de la réactivité sous régime chimique de ces matériaux démontre que la vitesse de réaction apparente du pitch (pour un pitch ayant un niveau de graphitisation similaire au coke et pour des matières premières utilisées dans ce projet) n’est pas plus élevée que celles du coke et du mégot (ce qui est en contradiction par rapport à la littérature), ainsi le phénomène de charbonnaille, attribué à une supposée sélectivité du CO2 sur le pitch n’est pas confirmée. La consommation de l’anode en carbone dans la cuve d’électrolyse est contrôlée par les impuretés, par le niveau de graphitisation mais également par le transport de masse à travers sa structure poreuse. Dans ce projet, la gazéification des grosses particules pourrait se rapprocher de la consommation de l’anode industrielle dans une cuve d’électrolyse. La vitesse de réaction apparente mesurée pour 9 tailles de particules d’anode (allant de 33 µm à 4 380 µm de diamètre) a permis de révéler l’effet de la taille, de la porosité et de la masse de l’échantillon sur la réactivité. Trois tailles de particules comprises entre 725 et 2 190 µm ont particulièrement été étudiées car elles sont proches de la taille standardisée (ISO 12981-1; - 1 400 + 1 000 µm). Les surfaces et les volumes spécifiques différentiels de ces trois tailles de particules gazéifiées à 5 pourcentages (0; 15; 25; 35 et 50%) déterminés par adsorption d’argon et par infiltration de mercure ont permis d’évaluer les contributions des gazéifications sous-critique (taille de pores inférieure à la taille critique des pores) et sur-critique (taille de pores supérieure à la taille critique des pores) sur la gazéification totale des anodes sous CO2 à 960 °C. La détermination de la taille critique des pores (TC) pour les 3 tailles de particules (20 µm pour 725 µm et 40 µm pour les particules de 1 200 et 2 190 µm) et la mesure des contributions sous-critique et sur-critique ont permis de révéler que les pores ayant une taille supérieure à cette taille critique jouerait un rôle prépondérant dans la réactivité au CO2 des anodes. En se basant sur une dimension intermédiaire de cet intervalle de taille de particules et sur la norme ISO 12981-1 (utilisée pour mesurer la réactivité au CO2 des particules de coke), les particules comprises entre - 1 400 + 1 000 µm ont été choisies pour mettre en évidence l’effet de la porosité sur la réactivité de l’anode et de ses constituants (coke, pitch, mégot et matrice liante) sous CO2 à 960 °C. La matrice liante est un mélange de fines particules de coke (inférieur à 150 µm) et le pitch. La mesure de la vitesse de réaction apparente de ces matériaux permet d’évaluer que la matrice liante semble avoir une réactivité légèrement plus grande que celles du coke, du mégot et de l’anode et très largement supérieure à celle du pitch (valable pour les matériaux utilisés dans ce projet). Ces différences peuvent s’expliquer par le ratio des impuretés catalysantes et inhibitrices, (Vanadium + Nickel) / Soufre, qui est très élevé dans le cas de la matrice liante et du coke mais également à un niveau de graphitisation légèrement plus faible. L’utilisation du facteur d’efficacité apparent permet de mettre en évidence l’effet de la structure du matériau sur la réactivité de particules de grandes tailles par rapport à la vitesse de réaction en régime chimique. En associant les vitesses de réaction apparente des deux régimes (chimique et particules de grandes tailles) pour les 5 matériaux (anode, coke, pitch, mégot et matrice liante), il est possible de révéler l’effet de la structure. Ainsi, pour l’anode et le pitch, le facteur d’efficacité est très faible (inférieure à 0,3) indiquant par conséquent qu’une structure adaptée de l’anode peut diminuer la réactivité globale. Lors de la caractérisation de ces matériaux afin de comprendre leurs réactivités, il a été révélé que la surface spécifique initiale de l’anode ne peut être estimée par la moyenne pondérée des surfaces de ses constituants (coke, pitch, mégot et matrice liante). Ainsi, malgré une similitude chimique, une division par matière première (coke, pitch et mégot) ou physique (coke, mégot et matrice liante) ne semble pouvoir expliquer cette grande surface spécifique et une nouvelle représentation de l’anode doit être envisagée. En raison d’un manque de support lors de la cuisson, le pitch, cuit seul ou bien cuit sous forme de matrice liante, ne peut pas s’étaler lors de sa pyrolyse. Ainsi, le mixage et la cuisson de trois recettes de coke et de pitch (coke/pitch : 100/0, 95/5 et 85/15 en masse/masse) révèlent une très grande surface spécifique initiale pour la recette 95/5. La réactivité de cette recette et celle de 100/0 sont très similaires alors que celle de 85/15 est très faible alors que celle de l’anode se situe à un niveau intermédiaire. En conséquence, en se basant sur les surfaces spécifiques initiales et sur les réactivités de ces trois recettes, il est possible d’estimer qu’une anode entière est composée de particules de coke partiellement enrobé de pitch (95/5) et totalement enrobé (85/15).