Personne :
Carufel, Jean-Lou de

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Carufel
Prénom
Jean-Lou de
Affiliation
Université Laval. Département d'informatique et de génie logiciel
ISNI
ORCID
Identifiant Canadiana
ncf10563354
person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationAccès libre
    Demonic Kleene Algebra
    (2009) Carufel, Jean-Lou de; Desharnais, Jules
    Nous rappelons d’abord le concept d’algèbre de Kleene avec domaine (AKD). Puis, nous expliquons comment utiliser les opérateurs des AKD pour définir un ordre partiel appelé raffinement démoniaque ainsi que d’autres opérateurs démoniaques (plusieurs de ces définitions proviennent de la littérature). Nous cherchons à comprendre comment se comportent les AKD munies des opérateurs démoniaques quand on exclut les opérateurs angéliques usuels. C’est ainsi que les propriétés de ces opérateurs démoniaques nous servent de base pour axiomatiser une algèbre que nous appelons Algèbre démoniaque avec domaine et opérateur t-conditionnel (ADD-[opérateur t-conditionnel]). Les lois des ADD-[opérateur t-conditionnel] qui ne concernent pas l’opérateur de domaine correspondent à celles présentées dans l’article Laws of programming par Hoare et al. publié dans la revue Communications of the ACM en 1987. Ensuite, nous étudions les liens entre les ADD-[opérateur t-conditionnel] et les AKD munies des opérateurs démoniaques. La question est de savoir si ces structures sont isomorphes. Nous démontrons que ce n’est pas le cas en général et nous caractérisons celles qui le sont. En effet, nous montrons qu’une AKD peut être transformée en une ADD-[opérateur t-conditionnel] qui peut être transformée à son tour en l’AKD de départ. Puis, nous présentons les conditions nécessaires et suffisantes pour qu’une ADD-[opérateur t-conditionnel] puisse être transformée en une AKD qui peut être transformée à nouveau en l’ADD-[opérateur t-conditionnel] de départ. Les conditions nécessaires et suffisantes mentionnées précédemment font intervenir un nouveau concept, celui de décomposition. Dans un contexte démoniaque, il est difficile de distinguer des transitions qui, à partir d’un même état, mènent à des états différents. Le concept de décomposition permet d’y arriver simplement. Nous présentons sa définition ainsi que plusieurs de ses propriétés.