Personne :
Ramezani, Pooya

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Ramezani
Prénom
Pooya
Affiliation
Université Laval. Département de génie électrique et de génie informatique
ISNI
ORCID
Identifiant Canadiana
ncf13678468
person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Robustness of multimodal 3D object detection using deep learning approach for autonomous vehicles
    (2021) Ramezani, Pooya; Bergevin, Robert
    Dans cette thèse, nous étudions la robustesse d’un modèle multimodal de détection d’objets en 3D dans le contexte de véhicules autonomes. Les véhicules autonomes doivent détecter et localiser avec précision les piétons et les autres véhicules dans leur environnement 3D afin de conduire sur les routes en toute sécurité. La robustesse est l’un des aspects les plus importants d’un algorithme dans le problème de la perception 3D pour véhicules autonomes. C’est pourquoi, dans cette thèse, nous avons proposé une méthode pour évaluer la robustesse d’un modèle de détecteur d’objets en 3D. À cette fin, nous avons formé un détecteur d’objets 3D multimodal représentatif sur trois ensembles de données différents et nous avons effectué des tests sur des ensembles de données qui ont été construits avec précision pour démontrer la robustesse du modèle formé dans diverses conditions météorologiques et de luminosité. Notre méthode utilise deux approches différentes pour construire les ensembles de données proposés afin d’évaluer la robustesse. Dans une approche, nous avons utilisé des images artificiellement corrompues et dans l’autre, nous avons utilisé les images réelles dans des conditions météorologiques et de luminosité extrêmes. Afin de détecter des objets tels que des voitures et des piétons dans les scènes de circulation, le modèle multimodal s’appuie sur des images et des nuages de points 3D. Les approches multimodales pour la détection d’objets en 3D exploitent différents capteurs tels que des caméras et des détecteurs de distance pour détecter les objets d’intérêt dans l’environnement. Nous avons exploité trois ensembles de données bien connus dans le domaine de la conduite autonome, à savoir KITTI, nuScenes et Waymo. Nous avons mené des expériences approfondies pour étudier la méthode proposée afin d’évaluer la robustesse du modèle et nous avons fourni des résultats quantitatifs et qualitatifs. Nous avons observé que la méthode que nous proposons peut mesurer efficacement la robustesse du modèle.