Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Keramidis, Iason

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Keramidis

Prénom

Iason

Affiliation

Université Laval. Département de psychiatrie et de neurosciences

ISNI

ORCID

Identifiant Canadiana

ncf13721111

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
En cours de chargement...
Vignette d'image
PublicationAccès libre

Imbalance of inhibitory control and excitatory drive associated with cognitive deficits in Alzheimer's disease and aging

2023, Keramidis, Iason, De Koninck, Yves

La maladie d'Alzheimer (MA) est la maladie neurodégénérative la plus courante et la cause prédominante de la démence sénile (caractérisé par une perte de mémoire et de raisonnement) et du déclin cognitif. Elle résulte d'une dégénérescence des neurones et d'une atrophie sévère qui commence dans les lobes temporal, pariétal et frontal et dans le gyrus cingulaire, puis dans des régions sous-corticales telles que l'hippocampe et le noyau de Meynert. Des observations récentes chez les patients atteints de la MA ont fait état d'une activité cérébrale anormale, commune à d'autres troubles neurologiques avant la perte des neurones. L'hyperexcitabilité neuronale se manifeste tôt dans la MA, ce qui entraîne une hyperactivité corticale et hippocampique et parfois même une activité épileptiforme et des crises chez la souris et l'homme. Cependant, les mécanismes sous-jacents à l'hyperexcitabilité dans le cerveau de la maladie d'Alzheimer restent obscurs. Une hypothèse importante suggère que l'accumulation d'amyloïde-β perturbe la signalisation inhibitrice médiée par le GABA[indice A]. Le vieillissement normal est également associé à un déclin des fonctions cognitives, indépendamment de tout trouble neurodégénératif. Les causes du déclin cognitif associé au vieillissement (DCAV) sont multiples, mais le facteur clé est l'équilibre entre l'excitation et l'inhibition synaptiques. Comme dans le cas de la maladie d'Alzheimer, une hyperactivité neuronale dans l'hippocampe, une région du cerveau impliquée dans la formation et la rétention de la mémoire, ou une absence de désactivation du réseau du mode par défaut (DMN) ont été décrites dans les troubles cognitifs associés au vieillissement. Pourtant, dans le cortex préfrontal, une région du cerveau cruciale pour les fonctions exécutives, une réduction manifeste de la ramification dendritique se produit avec le vieillissement, entraînant une diminution de la transmission synaptique excitatrice et une augmentation de l'entrée inhibitrice. Les études présentées dans cette thèse visent à identifier les altérations de la transmission synaptique conduisant aux déficits cognitifs associés à la MA et à l'ARCD mais visent également à dévoiler les mécanismes potentiels sous-jacents à l'hyperactivité neuronale. Dans la MA, les résultats présentés ici montrent une perte de fonction de l'extrudeur de chlorure neuronal KCC2, responsable du maintien de la robustesse de l'inhibition médiée par le GABA[indice A]. La restauration de KCC2 chez les souris porteuses de mutations liées à la maladie d'Alzheimer a permis d'inverser les déficits de mémoire spatiale et les dysfonctionnements sociaux, reliant la dyshoméostasie des chlorures au déclin cognitif lié à la maladie d'Alzheimer. Avec le vieillissement normal, un sous-ensemble de souris a développé des déficits de mémoire non spatiale, un comportement de type anxieux et un dysfonctionnement social. Dans ce sous-ensemble de souris âgées atteintes de troubles cognitifs, les niveaux de protéines synaptiques inhibitrices clés étaient élevés dans le cortex préfrontal médian (CPM). L'activation optogénétique des neurones GABAergiques du CPM a modifié le comportement des jeunes souris et a reproduit certaines des déficiences cognitives observées chez les vieilles souris souffrant de troubles cognitifs. D'autre part, lorsque la stimulation optogénétique a été utilisée pour générer un modèle d'hyperactivité neuronale soutenue et chronique dans l'hippocampe de jeunes souris, les niveaux de protéines synaptiques excitatrices et inhibitrices ont été réduits, ce qui indique une perturbation générale de la transmission synaptique. Enfin, et surtout, lorsque l'on compare les protéines modifiées lors d'une stimulation optogénétique chronique chez des souris de type sauvage à celles modifiées par des mutations et des pathologies dans les modèles de la maladie d'Alzheimer, seules quelques protéines sont exprimées différemment. Ces résultats suggèrent que l'hyperactivité neuronale pourrait contribuer directement à la perturbation de la transmission synaptique et à la neuropathologie liée à la MA. En résumé, le déclin cognitif peut se produire avec une inhibition à la fois exagérée et diminuée. Ces deux voies opposées, la première étant observée dans le déclin cognitif lié à l'âge et la seconde étant typique de la MA, perturbent de manière unique le fonctionnement normal du cerveau, ce qui entraîne à son tour un déclin cognitif. Une appréciation de ces résultats peut avoir des implications pour les interventions thérapeutiques dans les deux conditions. Dans l'ensemble, les travaux présentés dans cette thèse soulignent non seulement la contribution de l'altération de la transmission inhibitrice dans le développement du déclin cognitif dans la MA et le vieillissement, mais décrivent également l'implication de l'hyperactivité neuronale dans la perturbation des synapses et la neurodégénération.

En cours de chargement...
Vignette d'image
PublicationRestreint

A wireless electro-optic headstage with a 0.13-μm CMOS customintegrated DWT neural signal decoder for closed-loop optogenetics

2019-07-23, Gagnon-Turcotte, Gabriel, Keramidis, Iason, Ethier, Christian, De Koninck, Yves, Gosselin, Benoit

We present awireless electro-optic headstage that uses a 0.13-μm CMOS custom integrated circuit (IC) implementing a digital neural decoder (ND-IC) for enabling real-time closed-loop (CL) optogenetics. The ND-IC processes the neural activity data using three digital cores: 1) the detector core detects and extracts the action potential (AP) of individual neurons by using an adaptive threshold; 2) the data compression core compresses the detected AP by using an efficient Symmlet-2 discrete wavelet transform (DWT) processor for decreasing the amount of data to be transmitted by the low-power wireless link; and 3) the classification core sorts the compressed AP into separated clusters on the fly according to their wave shapes. The ND-IC encompasses several innovations: 1) the compression core decreases the complexity from O(n2) to O(n· log(n)) compared to the previous solutions, while using two times less memory, thanks to the use of a new coefficient sorting tree; and 2) the AP classification core reuses both the compressed DWT coefficients to perform implicit dimensionality reduction, which allows for performing intensive signal processing on-chip, while increasing power and hardware efficiency. This core also reuses the signal standard deviation already computed by theAPdetector core as threshold for performing automatic AP sorting. The headstage also introduces innovations by enabling a new wireless CL scheme between the neural data acquisition module and the optical stimulator. Our CL scheme uses the AP sorting and timing information produced by the ND-IC for detecting complex firing patternswithin the brain. The headstage is also smaller (1.13 cm3), lighter (3.0 g with a 40mAhbattery) and less invasive than the previous solutions, while providing a measured autonomy of 2h40, with the ND-IC. The whole system and the ND-IC are first validated in vivo in the LD thalamus of a Long-Evans rat, and then in freely-moving CL experiments involving a mouse virally expressing ChR2-mCherry in inhibitory neurons of the prelimbic cortex, and the results show that our system works well within an in vivo experimental setting with a freely moving mouse.

En cours de chargement...
Vignette d'image
PublicationAccès libre

A wireless electro-optic platform for multimodal electrophysiology and optogenetics in freely moving rodents

2021-08-16, Bilodeau, Guillaume, Gagnon-Turcotte, Gabriel, L. Gagnon, Léonard, Keramidis, Iason, De Koninck, Yves, Ethier, Christian, Gosselin, Benoit, Timofeev, Igor

This paper presents the design and the utilization of a wireless electro-optic platform to perform simultaneous multimodal electrophysiological recordings and optogenetic stimulation in freely moving rodents. The developed system can capture neural action potentials (AP), local field potentials (LFP) and electromyography (EMG) signals with up to 32 channels in parallel while providing four optical stimulation channels. The platform is using commercial off-the-shelf components (COTS) and a low-power digital field-programmable gate array (FPGA), to perform digital signal processing to digitally separate in real time the AP, LFP and EMG while performing signal detection and compression for mitigating wireless bandwidth and power consumption limitations. The different signal modalities collected on the 32 channels are time-multiplexed into a single data stream to decrease power consumption and optimize resource utilization. The data reduction strategy is based on signal processing and real-time data compression. Digital filtering, signal detection, and wavelet data compression are used inside the platform to separate the different electrophysiological signal modalities, namely the local field potentials (1–500 Hz), EMG (30–500 Hz), and the action potentials (300–5,000 Hz) and perform data reduction before transmitting the data. The platform achieves a measured data reduction ratio of 7.77 (for a firing rate of 50 AP/second) and weights 4.7 g with a 100-mAh battery, an on/off switch and a protective plastic enclosure. To validate the performance of the platform, we measured distinct electrophysiology signals and performed optogenetics stimulation in vivo in freely moving rondents. We recorded AP and LFP signals with the platform using a 16-microelectrode array implanted in the primary motor cortex of a Long Evans rat, both in anesthetized and freely moving conditions. EMG responses to optogenetic Channelrhodopsin-2 induced activation of motor cortex via optical fiber were also recorded in freely moving rodents.