Personne :
Le-Khac, Huy

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Le-Khac
Prénom
Huy
Affiliation
Université Laval. Faculté des sciences et de génie
ISNI
ORCID
Identifiant Canadiana
ncf11849894
person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Deep learning of chest X‑rays can predict mechanical ventilation outcome in ICU‑admitted COVID‑19 patients
    (Springer Nature, 2022-04-13) Potvin, Olivier; Le-Khac, Huy; Lemieux, Simon; Hains, Alexandre; Abrougui, Lyna; Dieumegarde, Louis; Tang, An; Chartrand‑Lefebvre, Carl; Gagnon, Louis; Lévesque, Marie-Hélène; Duchesne, Simon; Archambault, Patrick; Giguère, Raphaelle; Gagné, Christian; Gourdeau, Daniel; Duchesne, Nathalie; Cloutier, Florence; Biem, Jason Henry; Nepveu, Simon; Rosenbloom, Lorne; Yang, Issac
    The COVID-19 pandemic repeatedly overwhelms healthcare systems capacity and forced the development and implementation of triage guidelines in ICU for scarce resources (e.g. mechanical ventilation). These guidelines were often based on known risk factors for COVID-19. It is proposed that image data, specifcally bedside computed X-ray (CXR), provide additional predictive information on mortality following mechanical ventilation that can be incorporated in the guidelines. Deep transfer learning was used to extract convolutional features from a systematically collected, multiinstitutional dataset of COVID-19 ICU patients. A model predicting outcome of mechanical ventilation (remission or mortality) was trained on the extracted features and compared to a model based on known, aggregated risk factors. The model reached a 0.702 area under the curve (95% CI 0.707-0.694) at predicting mechanical ventilation outcome from pre-intubation CXRs, higher than the risk factor model. Combining imaging data and risk factors increased model performance to 0.743 AUC (95% CI 0.746-0.732). Additionally, a post-hoc analysis showed an increase performance on high-quality than low-quality CXRs, suggesting that using only high-quality images would result in an even stronger model.
  • Publication
    Accès libre
    Étude théorique de la substitution électrophile des polyméthylnaphtalènes par la théorie des orbitales moléculaires
    (1970) Le-Khac, Huy; Forst, Wendell
    Nous avons entrepris l'étude de la substitution electrophile des polyméthylnaphtalènes en utilisant différentes méthodes de la mécanique quantique. L'étude porte notamment sur trois indices de réactivité : la densité électronique (qr), l'énergie de localisation (Lr) et la superdélocalisabilité (Sr). Nous croyons que ces indices sont suffisamment représentatifs des trois principales approches existantes: approche statique, de localisation et de délocalisation. Dans une étude préliminaire où les indices ont été calculés à l'aide de la technique Oméga (ω = 1.4) telle que proposée par Streitwieser et où le modèle d'hétéroatome (hx = 3.0 et kc-x = 0.7) a été choisi comme modèle du groupement CH₃, les résultats ne semblent guère satisfaisants. Une étude des divers aspects du problème s'impose. Nous avons ainsi comparé la technique Oméga à la technique de Pople, Pariser et Parr, méthode la plus souvent employée dans la littérature. Les résultats indiquent que la technique Oméga avec l'inclusion de la variation de l'intégrale de résonance est parfaitement équivalente à la technique de Pople, Pariser et Parr et l'anomalie observée dans l'étude préliminaire ne semble donc pas due à la méthode de calcul. Parallèlement, nous avons observé que les indices de réactivité sauf la densité électronique sont fortement dépendants des valeurs des paramètres inductif et d'hyperconjugaison. Le choix des valeurs des paramètres doit ainsi jouer un rôle primordial dans ce genre d'études et l'anomalie observée dans l'étude préliminaire s'est avérée tout simplement un mauvaix choix des valeurs des paramètres. En ce qui concerne la représentation du groupement méthyle, le modèle d'hétéroatome, un modèle d'hyperconjugaison, semble plus commode que le modèle inductif surtout dans les calculs où intervient un modèle du complexe activé dont la structure n'est pas bien définie (le calcul de l'énergie de localisation en l'occurence). Enfin, avec un choix approprié de la méthode de calcul (technique Oméga modifiée, ω = 1.4) et de la représentation du groupement CH₃ (hétéroatome, hx = 2.0, kc-x = 0.8), les résultats indiquent que la superdélocalisabilité et l'énergie de localisation sont de bons indices de réactivité. La densité électronique, un indice purement statique, par contre, donne de mauvais résultats. Seules certaines combinaisons de ces indices statiques (qr et πrr, qr et fr) dont l'interprétation revient à une certaine inclusion du réactif électrophile dans les calculs peuvent donner des comparables à ceux des deux autres indices (Sr et Lr)
  • Publication
    Accès libre
    Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
    (Springer Nature, 2022-04-04) Potvin, Olivier; Le-Khac, Huy; Lemieux, Simon; Chartrand‑Lefebvre, Carl; Hains, Alexandre; Dieumegarde, Louis; Forghani, Reza; Tang, An; Lévesque, Marie-Hélène; Duchesne, Simon; Hornstein, David; Archambault, Patrick; Gagné, Christian; Gourdeau, Daniel; Duchesne, Nathalie; Martin, Diego; Vecchio, Fabrizio; Yang, Issac
    Radiological fndings on chest X-ray (CXR) have shown to be essential for the proper management of COVID-19 patients as the maximum severity over the course of the disease is closely linked to the outcome. As such, evaluation of future severity from current CXR would be highly desirable. We trained a repurposed deep learning algorithm on the CheXnet open dataset (224,316 chest X-ray images of 65,240 unique patients) to extract features that mapped to radiological labels. We collected CXRs of COVID-19-positive patients from an open-source dataset (COVID-19 image data collection) and from a multi-institutional local ICU dataset. The data was grouped into pairs of sequential CXRs and were categorized into three categories: ‘Worse’, ‘Stable’, or ‘Improved’ on the basis of radiological evolution ascertained from images and reports. Classical machine-learning algorithms were trained on the deep learning extracted features to perform immediate severity evaluation and prediction of future radiological trajectory. Receiver operating characteristic analyses and Mann-Whitney tests were performed. Deep learning predictions between “Worse” and “Improved” outcome categories and for severity stratifcation were signifcantly diferent for three radiological signs and one diagnostic (‘Consolidation’, ‘Lung Lesion’, ‘Pleural efusion’ and ‘Pneumonia’; all P < 0.05). Features from the frst CXR of each pair could correctly predict the outcome category between ‘Worse’ and ‘Improved’ cases with a 0.81 (0.74–0.83 95% CI) AUC in the open-access dataset and with a 0.66 (0.67–0.64 95% CI) AUC in the ICU dataset. Features extracted from the CXR could predict disease severity with a 52.3% accuracy in a 4-way classifcation. Severity evaluation trained on the COVID-19 image data collection had good out-of-distribution generalization when testing on the local dataset, with 81.6% of intubated ICU patients being classifed as critically ill, and the predicted severity was correlated with the clinical outcome with a 0.639 AUC. CXR deep learning features show promise for classifying disease severity and trajectory. Once validated in studies incorporating clinical data and with larger sample sizes, this information may be considered to inform triage decisions.