Personne :
Rousseau, Michel

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Rousseau
Prénom
Michel
Affiliation
Université Laval. Département des fondements et pratiques en éducation
ISNI
ORCID
Identifiant Canadiana
ncf10518208
person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    L'impact des méthodes de traitement des valeurs manquantes sur les qualités psychométriques d'échelles de mesure de type Likert
    (2006) Rousseau, Michel; Bertrand, Richard
    La présence de réponses manquantes pour certains items d’une échelle de mesure est un phénomène que tout chercheur est susceptible de rencontrer au cours de ses travaux. Bien que les biais que peut causer un traitement inadéquat de cette non-réponse soient connus depuis près de 30 ans (Rubin, 1976), les connaissances quant à l’efficacité des diverses méthodes de traitement des valeurs manquantes sont encore très restreintes. La présente étude vise à faire évoluer les connaissances et les pratiques concernant le traitement des valeurs manquantes dans le contexte d’utilisation d’échelles de type Likert. Le problème fondamental que posent les valeurs manquantes est qu’il est impossible de ne pas en tenir compte lors de l’application d’une méthode d’analyse statistique. La majorité de ces méthodes ayant été développées pour traiter des matrices de données complètes. Les modèles de mesure utilisés dans le traitement des données issues d’échelles de type Likert n’échappent pas à cette réalité. Deux modèles de mesure sont étudiés plus en profondeur dans ce projet soit, le modèle classique et le modèle gradué de Samejima. La recherche entreprise avait comme objectif d’évaluer l’efficacité de cinq méthodes de traitement des valeurs manquantes, dont la méthode d’imputation multiple. De plus, il était visé d’évaluer l’impact du nombre de sujets, du nombre d’items et de la proportion des valeurs manquantes sur l’efficacité des méthodes. Les résultats issus de cette recherche semblent suggérer que la méthode d’imputation multiple présente une efficacité supérieure aux autres méthodes bien que, tout dépendant du modèle de mesure considéré, d’autres méthodes plus simples semblent aussi efficaces. Il importe de noter en conclusion qu’aucune méthode de traitement ne peut éliminer complètement les biais causés par les valeurs manquantes et qu’à ce sujet, il serait préférable de prévenir plutôt que de guérir.