Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Guénard, Frédéric

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Guénard

Prénom

Frédéric

Affiliation

Université Laval. Institut sur la nutrition et les aliments fonctionnels

ISNI

ORCID

Identifiant Canadiana

ncf11859489

person.page.name

Résultats de recherche

Voici les éléments 1 - 10 sur 13
  • PublicationAccès libre
    The challenge of stratifying obesity : attempts in the Quebec family study
    (Frontiers Research Foundation, 2019-10-10) Guénard, Frédéric; Bouchard, Claude; Toro Martin, Juan de; Pérusse, Louis; Tremblay, Angelo; Vohl, Marie-Claude
    Background and aims: Obesity is a major health problem worldwide. Given the heterogeneous obesity phenotype, an optimal obesity stratification would improve clinical management. Since obesity has a strong genetic component, we aimed to develop a polygenic risk score (PRS) to stratify obesity according to the genetic background of the individuals. Methods: A total of 231 single nucleotide polymorphisms (SNP) significantly associated to body mass index (BMI) from 21 genome-wide association studies were genotyped or imputed in 881 subjects from the Quebec Family Study (QFS). The population was randomly split into discovery (80%; n = 704) and validation (20%; n = 177) samples with similar obesity (BMI ≥ 30) prevalence (27.8% and 28.2%, respectively). Family-based associations with obesity were tested for every SNP in the discovery sample and a weighed and continuous PRS231 was constructed. Generalized linear mixed effects models were used to test the association of PRS231 with obesity in the QFS discovery sample and validated in the QFS replication sample. Furthermore, the Fatty Acid Sensor (FAS) Study (n = 141; 27.7% obesity prevalence) was used as an independent sample to replicate the results. Results: The linear trend test demonstrated a significant association of PRS231 with obesity in the QFS discovery sample (ORtrend = 1.19 [95% CI, 1.14-1.24]; P = 2.0x10-16). We also found that the obesity prevalence was significantly greater in the higher PRS231 quintiles compared to the lowest quintile. Significant and consistent results were obtained in the QFS validation sample for both the linear trend test (ORtrend = 1.16 [95% CI, 1.07-1.26]; P = 6.7x10-4), and obesity prevalence across quintiles. These results were partially replicated in the FAS sample (ORtrend = 1.12 [95% CI, 1.02-1.24]; P = 2.2x10-2). PRS231 explained 7.5%, 3.2%, and 1.2% of BMI variance in QFS discovery, QFS validation, and FAS samples, respectively. Conclusions: These results revealed that genetic background in the form of a 231 BMI-associated PRS has a significant impact on obesity, but a limited potential to accurately stratify it. Further studies are encouraged on larger populations.
  • PublicationAccès libre
    Genome-wide association study of dietary pattern scores
    (MDPI, 2017-06-23) Guénard, Frédéric; Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Vohl, Marie-Claude; Couture, Patrick
    Dietary patterns, representing global food supplies rather than specific nutrients or food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality. The contribution of genetic factors in the determination of food intakes, preferences and dietary patterns has been previously established. The current study aimed to identify novel genetic factors associated with reported dietary pattern scores. Reported dietary patterns scores were derived from reported dietary intakes for the preceding month and were obtained through a food frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of 141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations (p < 1 × 10−5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these, SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were also observed from SNP-surrounding sequences. Results from the current GWAS study suggest an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose metabolism and food-induced response in the brain in the adoption of dietary patterns.
  • PublicationAccès libre
    A GWAS follow-up of obesity-related SNPs in SYPL2 reveals sexspecific association with hip circumference
    (John Wiley & Sons Inc., 2016-09-20) Guénard, Frédéric; Biron, Simon; Toro Martin, Juan de; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Deshaies, Yves; Marceau, Simon; Tchernof, André
    Objective A novel single-nucleotide polymorphism (SNP) associated with morbid obesity was recently identified by exome sequencing. The purpose of this study was to follow up this low-frequency coding SNP located within the SYPL2 locus and associated with body mass index in order to reveal novel associations with obesity-related traits. Methods The body mass index-associated SNP (rs62623713 A>G [chr1:109476817/hg19]) and two tagging SNPs within the SYPL2 locus, rs9661614 T>C (chr1:109479215) and rs485660 G>A (chr1:109480810), were genotyped in the obesity (n = 3,017) and the infogene (n = 676) cohorts, which were further combined, leading to a larger cohort of 3,693 individuals. Association testing was performed by general linear models in the obesity cohort and validated by joint analysis in the combined cohort. Results rs9661614 and rs485660 were significantly associated with hip circumference (HC) in the obesity cohort, with heterozygotes exhibiting a significantly lower HC. These results were validated by joint analysis for rs9661614 (false discovery rate [FDR]-corrected P = 7.5 × 10−4) and, to a lesser extent, for rs485660 (FDR corrected P = 3.9 × 10−2). The association with HC remained significant for rs9661614 when tested independently in women (FDR-corrected P = 1.7 × 10−2), but not for rs485660 (FDR-corrected P = 0.2). Both associations were absent in men. Conclusions This study reveals strong evidence for a novel association between rs9661614 (T>C) and HC in women, which likely reflects a preferential association of SYPL2 to a gynoid profile of fat distribution. The study findings support a clinical significance of SYPL2 worth considering when assessing risk factors associated with obesity.
  • PublicationAccès libre
    Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome
    (Elsevier, 2017-02-01) Guénard, Frédéric; Biron, Simon; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Marceau, Simon (***WMS); Deshaies, Yves; Tchernof, André
    A genetic influence on methylation levels has been reported and methylation quantitative trait loci (meQTL) have been identified in various tissues. The contribution of genetic and epigenetic factors in the development of the metabolic syndrome (MetS) has also been noted. To pinpoint candidate genes for testing the association of SNPs with MetS and its components, we aimed to evaluate the contribution of genetic variations to differentially methylated CpG sites in severely obese men discordant for MetS. A genome-wide differential methylation analysis was conducted in visceral adipose tissue (VAT) of 31 severely obese men discordant for MetS (16 with and 15 without MetS) and identified ∼17,800 variable CpG sites. The genome-wide association study conducted to identify the SNPs (meQTL) associated with methylation levels at variable CpG sites revealed 2292 significant associations (P < 2.22 × 10−11) involving 2182 unique meQTLs regulating the methylation levels of 174 variable CpG sites. Two meQTLs disrupting CpG sites located within the collagen-encoding COL11A2 gene were tested for associations with MetS and its components in a cohort of 3021 obese individuals. Rare alleles of these meQTLs showed association with plasma fasting glucose levels. Further analysis conducted on these meQTL suggested a biological impact mediated through the disruption of transcription factor (TF)–binding sites based on the prediction of TF-binding affinities. The current study identified meQTL in the VAT of severely obese men and revealed associations of two COL11A2 meQTL with fasting glucose levels.
  • PublicationAccès libre
    Novel genetic loci associated with the plasma triglyceride response to an omega-3 fatty acid supplementation
    (Karger, 2016-06-01) Vallée-Marcotte, Bastien; Cormier, Hubert; Guénard, Frédéric; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude
    A recent genome-wide association study (GWAS) by our group identified 13 loci associated with the plasma triglyceride (TG) response to omega-3 (n-3) fatty acid (FA) supplementation. This study aimed to test whether single-nucleotide polymorphisms (SNPs) within the IQCJ, NXPH1, PHF17 and MYB genes are associated with the plasma TG response to an n-3 FA supplementation. Methods: A total of 208 subjects followed a 6-week n-3 FA supplementation of 5 g/day of fish oil (1.9-2.2 g of eicosapentaenoic acid and 1.1 g of docosahexaenoic acid). Measurements of plasma lipids were made before and after the supplementation. Sixty-seven tagged SNPs were selected to increase the density of markers near GWAS hits. Results: In a repeated model, independent effects of the genotype and the gene-supplementation interaction were associated with plasma TG. Genotype effects were observed with two SNPs of NXPH1, and gene-diet interactions were observed with ten SNPs of IQCJ, four SNPs of NXPH1 and three SNPs of MYB. Positive and negative responders showed different genotype frequencies with nine SNPs of IQCJ, two SNPs of NXPH1 and two SNPs of MYB. Conclusion: Fine mapping in GWAS-associated loci allowed the identification of SNPs partly explaining the large interindividual variability observed in plasma TG levels in response to an n-3 FA supplementation.
  • PublicationAccès libre
    A common variant in ARHGEF10 alters delta-6 desaturase activity and influence susceptibility to hypertriglyceridemia
    (Elsevier, 2017-11-01) Guénard, Frédéric; Toro Martin, Juan de; Rudkowska, Iwona; Lemieux, Simone; Vohl, Marie-Claude; Couture, Patrick
    Background. Numbers of single nucleotide polymorphisms (SNPs) associated with fatty acid desaturase activities have been previously identified within the FADS1-FADS2 gene cluster, which encodes delta-5 (D5D) and delta-6 (D6D) desaturases, respectively. Objective. We aimed at further characterizing the genetic variability associated with D5D and D6D activities on a genome-wide scale. Methods. We conducted a genome-wide association study of D5D and D6D activities in a cohort of 141 individuals from the greater Quebec City metropolitan area using the Illumina HumanOmni5-Quad BeadChip. Estimates of D5D and D6D activities were computed using product-to-precursor fatty acid ratios, arachidonic acid (AA)/dihomogamma-linolenic acid (DGLA) for D5D, and DGLA/linoleic acid (LA) for D6D. Levels of fatty acids were measured by gas chromatography in plasma phospholipids. Results. We identified 24 previously reported SNPs associated with fatty acid levels and desaturase activities as significantly associated with D5D activity within the FADS1-FADS2 gene cluster (lead SNP rs174566/A>G). Furthermore, we identified 5 novel loci potentially associated with D5D activity at chromosomes 1, 6, 4, 8 and 19. A novel SNP associated with D6D activity and mapped to the ARHGEF10 locus (rs2280885/A>G) was identified, with carriers of the rare allele showing a significant increase in D6D activity and plasma triglyceride levels. After multiple testing correction by permutation, only rs174566 and rs2280885 remained significantly associated to D5D and D6D activity estimates, respectively. Conclusions. These results confirm previous genetic associations within the FADS1- FADS2 gene cluster with D5D activity. A novel genetic variation associated with higher D6D activity within the ARHGEF10 gene is potentially altering plasma triglyceride levels.
  • PublicationAccès libre
    The rare allele of DGKZ SNP rs10838599 is associated with variability in HDL-cholesterol levels among severely obese patients
    (Open Access Text Pvt. Ltd, 2016-05-12) Guénard, Frédéric; Pérusse, Louis; Hould, Frédéric-Simon; Deshaies, Yves; Marceau, Picard; Bégin, Stéphanie; Vohl, Marie-Claude; Lebel, Stéfane; Tchernof, André
    Introduction: Diacylglycerol kinase-zeta, one of the ten isoforms of DGKs expressed in mammals is an important enzyme of lipid metabolism. It catalyzes the interconversion of diacylglycerol and phosphatidic acid, two major second messengers. Its gene DGKZ has been previously identified as being overexpressed and undermethylated in visceral adipose tissue of patients with (MetS+) versus without (MetS-) the metabolic syndrome (MetS). Objective: The aim of this study was to investigate the associations between DGKZ gene polymorphisms (SNPs) and phenotypes related to MetS (BMI, waist girth, CRP, fasting glucose, lipid profile (triglycerides, total-cholesterol, LDL-cholesterol and HDL-cholesterol (HDL-C)), resting systolic and diastolic blood pressures). Methods: The study sample included 1752 severely obese participants who underwent bariatric surgery. Associations between the five selected tSNPs of DGKZ and features of the MetS were tested. The effects of these SNPs on DGKZ methylation and expression levels were tested in subgroups of 32 and 14 obese subjects, respectively. Correlations between methylation and expression levels were also computed. Results: Homozygotes for the rare allele of rs10838599 displayed higher plasma HDL-C concentrations compared to the other genotype groups (p=0.03). For gene methylation, only a trend with the cg05412031 CpG site (p=0.09) was found for the single significantly phenotype-associated SNP. There was no significant correlation between DGKZ methylation at cg05412031 and expression levels. Conclusion: These results suggest that DGKZ SNP rs10838599 modulates plasma HDL-C levels thereby its gene contributes to the inter-individual variability observed in the cardiometabolic risk profile of patients with severe obesity.
  • PublicationRestreint
    Association of LIPA gene polymorphisms with obesity-related metabolic complications among severely obese patients
    (NAASO the Obesity Society, 2012-10-17) Guénard, Frédéric; Biron, Simon; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Houde, Alain; Vohl, Marie-Claude; Deshaies, Yves; Marceau, Simon; Bouchard, Luigi; Tchernof, André
    The lipase A, lysosomal acid, cholesterol esterase enzyme (LIPA) is involved in the hydrolysis of triglycerides (TGs) and cholesteryl esters (CEs) delivered to lysosomes. LIPA deficiency in human causes two distinct phenotypes characterized by intracellular storage of CE and derangements in the control of cholesterol production, namely the Wolman disease (WD) and the CE storage disease (CESD). To test the potential association of LIPA gene polymorphisms with obesity-related metabolic complications, promoter, exons, and intronic flanking regions of the LIPA gene were first sequenced in 25 individuals. From the 14 common polymorphisms identified, 12 tagging single-nucleotide polymorphisms (tSNPs) were genotyped in a cohort of 1,751 obese individuals. After adjustments for the effect of age, sex, diabetes, and medication, the C allele of SNP rs1051338 was associated with lower blood pressure (BP; systolic (SBP) P = 0.004; diastolic (DBP) P = 0.006). Three of the tested SNPs were associated with modifications of the plasma lipid profile. The G/G genotype of rs2071509 was associated with higher high-density lipoprotein cholesterol (HDL-C) levels (P = 0.009) and minor allele of rs1131706 was also associated with higher HDL-C (P = 0.004) and an association between rs3802656 and total cholesterol (total-C)/HDL-C ratio was identified (P = 0.04). These results thus suggest that LIPA polymorphisms contribute to the interindividual variability observed in obesity-related metabolic complications.
  • PublicationAccès libre
    Common sequence variants in CD163 gene are associated with plasma triglyceride and total cholesterol levels in severely obese individuals
    (Longdom Publishing SL, 2014-11-27) Guénard, Frédéric; Marianne, Cormier; Biron, Simon; Deshaies, Yves; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Marceau, Simon
    Objective: The CD163 glycoprotein is a member of the scavenger receptor cysteine-rich superfamily acting as an inflammatory modulator inducing anti-inflammatory pathways. Previous findings from our group identified this gene as being differentially expressed in visceral adipose tissue (VAT) of severely obese men with vs. without the metabolic syndrome. The current study aimed to test the association between CD163 gene polymorphisms and obesity-related metabolic complications. Methods: Sequencing of the CD163 gene region was conducted in 25 severely obese individuals. Eleven tagging SNPs (tSNP) were selected and tested for association with obesity-related complications in nearly 1900 severely obese individuals. To further explore potential mechanisms underlying associations identified, the impact of tSNPs on methylation levels of 3 CpG sites (two promoter and one intronic) and gene expression levels were tested in a subset of 14 individuals. Results: Rare allele carriers for rs7980201 demonstrated lower fasting total cholesterol (total-C) levels (p=0.01) while rs4883263 rare allele carriers had increased total-C (p=0.04) and triglyceride (TG) levels (p=0.01). An association identified between rs7980201 SNP and methylation level of a promoter CpG site (p=0.04) suggested an impact on CD163 gene methylation in VAT, but such association was not reflected at gene expression level. Conclusion: The current study reports association of CD136 gene variations with fasting total-C and TG levels and suggests that CD163 SNPs could contribute to the inter-individual variability observed in obesity-related metabolic complications.
  • PublicationAccès libre
    Impact of NMT1 gene polymorphisms on features of the metabolic syndrome among severely obese patients
    (Openventio Publishers, 2015-11-24) Guénard, Frédéric; Biron, Simon; Biertho, Laurent; Deshaies, Yves; Pérusse, Louis; Lescelleur, Odette; Bégin, Stéphanie; Vohl, Marie-Claude; Tchernof, André; Marceau, Simon
    Introduction: N-myristoyltransferase (NMT) is implicated in myristoylation, required for biological activities of several proteins. Its gene N-myristoyltransferase 1 (NMT1) has been found to be overexpressed and hypermethylated in Visceral Adipose Tissue (VAT) of severely obese individuals with Metabolic Syndrome (MetS+) versus without (MetS-). Objective: The aim of this study was to verify the associations between NMT1 gene polymorphisms Single Nucleotide Polymorphisms (SNPs) and metabolic complications among obese subjects. Methods: Associations between SNPs and determinants of MetS were tested with 1752 obese participants undergoing a bariatric surgery. The effect of selected SNPs on methylation, and correlation with expression levels of NMT1 were verified in subgroups. Results: Rs2239921 was significantly associated with systolic (p=0.03) and diastolic (p<0.0001) blood pressures. Rs2239923 was associated with plasma High Density Lipoprotein-Cholesterol or HDL-Cholesterol (HDL-C) levels (p=0.05), while rs2269746 was associated with Low Density Lipoprotein-Cholesterol or LDL-Cholesterol (LDL-C) (p=0.006) and Total-Cholesterol (Total-C) levels (p=0.004). Rs1005136 (p=0.03), rs8066395 (p=0.03) or rs2157840 (p=0.04) were associated with plasma concentrations of C-Reactive Protein (CRP). Phenotype-associated SNPs were associated with NMT1 methylation levels of six CpG sites. NMT1 methylation levels of one CpG site, cg10755730, correlated with gene expression levels (r=0.57; p=0.04). Conclusion: These results suggest that the presence of NMT1 SNPs is associated with altered plasma lipid levels as well as with increased inflammation markers and blood pressure among severely obese patients.