Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Guénard, Frédéric

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Guénard

Prénom

Frédéric

Affiliation

Université Laval. Institut sur la nutrition et les aliments fonctionnels

ISNI

ORCID

Identifiant Canadiana

ncf11859489

person.page.name

Résultats de recherche

Voici les éléments 1 - 5 sur 5
  • PublicationAccès libre
    Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome
    (Elsevier, 2017-02-01) Guénard, Frédéric; Biron, Simon; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Marceau, Simon (***WMS); Deshaies, Yves; Tchernof, André
    A genetic influence on methylation levels has been reported and methylation quantitative trait loci (meQTL) have been identified in various tissues. The contribution of genetic and epigenetic factors in the development of the metabolic syndrome (MetS) has also been noted. To pinpoint candidate genes for testing the association of SNPs with MetS and its components, we aimed to evaluate the contribution of genetic variations to differentially methylated CpG sites in severely obese men discordant for MetS. A genome-wide differential methylation analysis was conducted in visceral adipose tissue (VAT) of 31 severely obese men discordant for MetS (16 with and 15 without MetS) and identified ∼17,800 variable CpG sites. The genome-wide association study conducted to identify the SNPs (meQTL) associated with methylation levels at variable CpG sites revealed 2292 significant associations (P < 2.22 × 10−11) involving 2182 unique meQTLs regulating the methylation levels of 174 variable CpG sites. Two meQTLs disrupting CpG sites located within the collagen-encoding COL11A2 gene were tested for associations with MetS and its components in a cohort of 3021 obese individuals. Rare alleles of these meQTLs showed association with plasma fasting glucose levels. Further analysis conducted on these meQTL suggested a biological impact mediated through the disruption of transcription factor (TF)–binding sites based on the prediction of TF-binding affinities. The current study identified meQTL in the VAT of severely obese men and revealed associations of two COL11A2 meQTL with fasting glucose levels.
  • PublicationAccès libre
    The rare allele of DGKZ SNP rs10838599 is associated with variability in HDL-cholesterol levels among severely obese patients
    (Open Access Text Pvt. Ltd, 2016-05-12) Guénard, Frédéric; Pérusse, Louis; Hould, Frédéric-Simon; Deshaies, Yves; Marceau, Picard; Bégin, Stéphanie; Vohl, Marie-Claude; Lebel, Stéfane; Tchernof, André
    Introduction: Diacylglycerol kinase-zeta, one of the ten isoforms of DGKs expressed in mammals is an important enzyme of lipid metabolism. It catalyzes the interconversion of diacylglycerol and phosphatidic acid, two major second messengers. Its gene DGKZ has been previously identified as being overexpressed and undermethylated in visceral adipose tissue of patients with (MetS+) versus without (MetS-) the metabolic syndrome (MetS). Objective: The aim of this study was to investigate the associations between DGKZ gene polymorphisms (SNPs) and phenotypes related to MetS (BMI, waist girth, CRP, fasting glucose, lipid profile (triglycerides, total-cholesterol, LDL-cholesterol and HDL-cholesterol (HDL-C)), resting systolic and diastolic blood pressures). Methods: The study sample included 1752 severely obese participants who underwent bariatric surgery. Associations between the five selected tSNPs of DGKZ and features of the MetS were tested. The effects of these SNPs on DGKZ methylation and expression levels were tested in subgroups of 32 and 14 obese subjects, respectively. Correlations between methylation and expression levels were also computed. Results: Homozygotes for the rare allele of rs10838599 displayed higher plasma HDL-C concentrations compared to the other genotype groups (p=0.03). For gene methylation, only a trend with the cg05412031 CpG site (p=0.09) was found for the single significantly phenotype-associated SNP. There was no significant correlation between DGKZ methylation at cg05412031 and expression levels. Conclusion: These results suggest that DGKZ SNP rs10838599 modulates plasma HDL-C levels thereby its gene contributes to the inter-individual variability observed in the cardiometabolic risk profile of patients with severe obesity.
  • PublicationAccès libre
    Common sequence variants in CD163 gene are associated with plasma triglyceride and total cholesterol levels in severely obese individuals
    (Longdom Publishing SL, 2014-11-27) Guénard, Frédéric; Marianne, Cormier; Biron, Simon; Deshaies, Yves; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Marceau, Simon
    Objective: The CD163 glycoprotein is a member of the scavenger receptor cysteine-rich superfamily acting as an inflammatory modulator inducing anti-inflammatory pathways. Previous findings from our group identified this gene as being differentially expressed in visceral adipose tissue (VAT) of severely obese men with vs. without the metabolic syndrome. The current study aimed to test the association between CD163 gene polymorphisms and obesity-related metabolic complications. Methods: Sequencing of the CD163 gene region was conducted in 25 severely obese individuals. Eleven tagging SNPs (tSNP) were selected and tested for association with obesity-related complications in nearly 1900 severely obese individuals. To further explore potential mechanisms underlying associations identified, the impact of tSNPs on methylation levels of 3 CpG sites (two promoter and one intronic) and gene expression levels were tested in a subset of 14 individuals. Results: Rare allele carriers for rs7980201 demonstrated lower fasting total cholesterol (total-C) levels (p=0.01) while rs4883263 rare allele carriers had increased total-C (p=0.04) and triglyceride (TG) levels (p=0.01). An association identified between rs7980201 SNP and methylation level of a promoter CpG site (p=0.04) suggested an impact on CD163 gene methylation in VAT, but such association was not reflected at gene expression level. Conclusion: The current study reports association of CD136 gene variations with fasting total-C and TG levels and suggests that CD163 SNPs could contribute to the inter-individual variability observed in obesity-related metabolic complications.
  • PublicationRestreint
    A CpG-SNP located within the ARPC3 gene promoter is associated with hypertriglyceridemia in severely obese patients
    (S. Karger AG, 2016-04-08) Guénard, Frédéric; Biron, Simon; Toro Martin, Juan de; Deshaies, Yves; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Tchernof, André; Marceau, Simon
    Aims: To test the potential association of cytosine-phosphate-guanine dinucleotides (CpG)-single-nucleotide polymorphisms (SNPs) located within actin-related protein 2/3 complex subunit 3 (ARPC3), a gene recently linked to adipogenesis and lipid accumulation, with metabolic syndrome (MetS) features in severely obese patients. Methods: Prioritized SNPs within the ARPC3 locus were genotyped and tested for associations with MetS features in a cohort of 1,749 obese patients with and without MetS. Association testing with CpG methylation levels was performed in a methylation sub-cohort of 16 obese men. Results: A significant association was found between the CpG-SNP rs3759384 (C>T) and plasma triglyceride (TG) levels (false discovery rate-corrected p = 3.5 × 10-2), with 0.6% of the phenotypic variance explained by the CpG-SNP, and with TT homozygotes showing the highest plasma TG levels (1.89 mmol/l). The carriers of the rs3759384 T allele also showed a significant decrease in methylation levels of the ARPC3 promoter-associated CpG site cg10738648 in both visceral adipose tissue and blood. ARPC3 expression levels showed a strong correlation with plasma TG levels (r = 0.70; p = 0.02). Conclusions: The increased plasma TG levels found in homozygous rs3759384 T allele carriers argue for a relevant role of this CpG-SNP in lipid management among obese individuals, which may be driven by an epigenetic-mediated mechanism.
  • PublicationRestreint
    Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances
    (American Physiological Society, 2014-03-15) Guénard, Frédéric; Biron, Simon; Biertho, Laurent; Pérusse, Louis; Lescelleur, Odette; Vohl, Marie-Claude; Deshaies, Yves; Marceau, Simon; Tchernof, André
    Obesity is associated with an increased risk of Type 2 diabetes and cardiovascular diseases (CVD). The severely obese population is heterogeneous regarding CVD risk profile. Our objective was to identify metabolic pathways potentially associated with development of metabolic syndrome (MetS) through an analysis of overrepresented pathways from differentially methylated genes between severely obese men with (MetS+) and without (MetS-) the MetS. Genome-wide quantitative DNA methylation analysis in VAT of severely obese men was carried out using the Infinium HumanMethylation450 BeadChip. Differences in methylation levels between MetS+ (n = 7) and MetS- (n = 7) groups were tested. Overrepresented pathways from the list of differentially methylated genes were identified and visualized with the Ingenuity Pathway Analysis system. Differential methylation analysis between MetS+ and MetS- groups identified 8,578 methylation probes (3,258 annotated genes) with significant differences in methylation levels (false discovery rate-corrected DiffScore ≥ |13| ∼ P ≤ 0.05). Pathway analysis from differentially methylated genes identified 41 overrepresented (P ≤ 0.05) pathways. The most overrepresented pathways were related to structural components of the cell membrane, inflammation and immunity and cell cycle regulation. This study provides potential targets associated with adipose tissue dysfunction and development of the MetS.