Personne :
Guénard, Frédéric

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Nom de famille
Université Laval. Institut sur la nutrition et les aliments fonctionnels
Identifiant Canadiana

Résultats de recherche

Voici les éléments 1 - 10 sur 39
  • Publication
    Accès libre
    Differential methylation of inflammatory and insulinotropic genes after metabolic surgery in women
    (iMed Pub LLC, 2015-10-03) Guénard, Frédéric; Marceau, Picard; Cianflone, Katherine M.; Deshaies, Yves; Vohl, Marie-Claude; Tchernof, André; Kral, John G.
    Context: Biliopancreatic diversion with duodenal switch (BPD-DS), a metabolic bariatric operation, induces durable loss of excess weight and reduced cardiometabolic risk. Altered epigenetic marks are mechanistically associated with environment-driven phenotypic variations. Objective: The current study aimed to compare gene methylation levels before and after BPD-DS to identify epigenetic marks potentially linked to metabolic improvements induced by BPD-DS. Design and patients: Metabolic risk factors and gene methylation levels of 20 women studied mean 12 years (range 4-22) after BPD-DS were compared to those of 20 severely obese surgical candidates as controls, matched for pre-surgical age, body mass index and dyslipidemia and hypertension prevalences. Whole-genome blood DNA methylation analysis enabled between-group differential methylation analyses. We calculated correlations between methylation levels of the most differentially methylated CpG sites and plasma glucose and insulin levels and HOMA-IR. Results: Differential methylation analysis identified 15,343 genes demonstrating at least one differentially methylated CpG site (p<1.43x10-7). Diabetic and inflammation/immune functions were among the most overrepresented from the 200 genes exhibiting the largest group differences in methylation levels. CpG sites methylation levels of genes related to insulin action correlated significantly with fasting insulin levels and homeostatic model of insulin resistance (p≤0.002 for all). Conclusion: These findings suggest that differential methylation levels in obese controls versus treated women may partially explain the durable metabolic improvements after BPD-DS.
  • Publication
    Accès libre
    Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity
    (Springer, 2019-12-02) Guénard, Frédéric; Toro Martin, Juan de; Hould, Frédéric-Simon; Vohl, Marie-Claude; Lebel, Stéfane; Tchernof, André; Julien, François; Marceau, Simon
    Background There is solid evidence that obesity induces the acceleration of liver epigenetic aging. However, unlike easily accessible blood or subcutaneous adipose tissue, little is known about the impact of obesity on epigenetic aging of metabolically active visceral adipose tissue (VAT). Herein, we aimed to test whether obesity accelerates VAT epigenetic aging in subjects with severe obesity. Results A significant and positive correlation between chronological age and epigenetic age, estimated with a reduced version of the Horvath’s epigenetic clock, was found in both blood (r = 0.78, p = 9.4 × 10−12) and VAT (r = 0.80, p = 1.1 × 10−12). Epigenetic age acceleration, defined as the residual resulting from regressing epigenetic age on chronological age, was significantly correlated with body mass index (BMI) in VAT (r = 0.29, p = 0.037). Multivariate linear regression analysis showed that, after adjusting for chronological age, sex and metabolic syndrome status, BMI remained significantly associated with epigenetic age acceleration in VAT (beta = 0.15, p = 0.035), equivalent to 2.3 years for each 10 BMI units. Binomial logistic regression showed that BMI-adjusted epigenetic age acceleration in VAT was significantly associated with a higher loss of excess body weight following biliopancreatic diversion with duodenal switch surgery (odds ratio = 1.21; 95% CI = 1.04–1.48; p = 0.03). Conclusions Epigenetic age acceleration increases with BMI in VAT, but not in blood, as previously reported in liver. These results suggest that obesity is associated with epigenetic age acceleration of metabolically active tissues. Further studies that deepen the physiological relevance of VAT epigenetic aging will help to better understand the onset of metabolic syndrome and weight loss dynamics following bariatric surgery.
  • Publication
    Accès libre
    Temporal changes in gene expression profile during mature adipocyte dedifferentiation
    (Hindawi Publishing Corporation, 2017-03-19) Guénard, Frédéric; Biron, Simon; Lapointe, Marc; Vohl, Marie-Claude; Côté, Julie Anne; Lessard, Julie.; Tchernof, André
    Objective. To characterize changes in gene expression profile during human mature adipocyte dedifferentiation in ceiling culture. Methods. Subcutaneous (SC) and omental (OM) adipose tissue samples were obtained from 4 participants paired for age and BMI. Isolated adipocytes were dedifferentiated in ceiling culture. Gene expression analysis at days 0, 4, 7, and 12 of the cultures was performed using Affymetrix Human Gene 2.0 STvi arrays. Hierarchical clustering according to similarity of expression changes was used to identify overrepresented functions. Results. Four clusters gathered genes with similar expression between day 4 to day 7 but decreasing expression from day 7 to day 12. Most of these genes coded for proteins involved in adipocyte functions (LIPE, PLIN1, DGAT2, PNPLA2, ADIPOQ, CEBPA, LPL, FABP4, SCD, INSR, and LEP). Expression of several genes coding for proteins implicated in cellular proliferation and growth or cell cycle increased significantly from day 7 to day 12 (WNT5A, KITLG, and FGF5). Genes coding for extracellular matrix proteins were differentially expressed between days 0, 4, 7, and 12 (COL1A1, COL1A2, and COL6A3, MMP1, and TGFB1). Conclusion. Dedifferentiation is associated with downregulation of transcripts encoding proteins involved in mature adipocyte functions and upregulation of genes involved in matrix remodeling, cellular development, and cell cycle.
  • Publication
    Accès libre
    Influences of gestational obesity on associations between genotypes and gene expression levels in offspring following maternal gastrointestinal bypass surgery for obesity.
    (Public Library of Science, 2015-01-20) Guénard, Frédéric; Marceau, Picard; Bossé, Yohan; Lamontagne, Maxime; Cianflone, Katherine M.; Kral, John G.; Vohl, Marie-Claude; Deshaies, Yves
    Maternal obesity and excess gestational weight gain with compromised metabolic fitness predispose offspring to lifelong obesity and its comorbidities. We demonstrated that compared to offspring born before maternal gastrointestinal bypass surgery (BMS) those born after (AMS) were less obese, with less cardiometabolic risk reflected in the expression and methylation of diabetes, immune and inflammatory pathway genes. Here we examine relationships between gestational obesity and offspring gene variations on expression levels. Methods : Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis. Results : Significant interactions (p ≤ 1.22x10-12) were found for 525 among the 16,060 expressed transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis demonstrated enrichment of transcription and of cellular metabolism functions and overrepresentation of cellular stress and signaling, immune response, inflammation, growth, proliferation and development pathways. Conclusion : We suggest that impaired maternal gestational metabolic fitness interacts with offspring gene variations modulating gene expression levels, providing potential mechanisms explaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated maternal lipid and carbohydrate metabolism.
  • Publication
    Polygenic risk score for predicting weight loss after bariatric surgery
    (American Society for Clinical Investigation, 2018-09-06) Guénard, Frédéric; Toro Martin, Juan de; Pérusse, Louis; Marceau, Simon; Vohl, Marie-Claude; Tchernof, André
    BACKGROUND. The extent of weight loss among patients undergoing bariatric surgery is highly variable. Herein, we tested the contribution of genetic background to such interindividual variability after biliopancreatic diversion with duodenal switch. METHODS. Percentage of excess body weight loss (%EBWL) was monitored in 865 patients over a period of 48 months after bariatric surgery, and 2 polygenic risk scores were constructed with 186 and 11 (PRS₁₈₆ and PRS₁₁) single nucleotide polymorphisms previously associated with BMI. RESULTS. The accuracy of the %EBWL logistic prediction model — including initial BMI, age, sex, and surgery modality, and assessed as the area under the receiver operating characteristics (ROC) curve adjusted for optimism ((AUCadj= 0.867) — significantly increased after the inclusion of PRS186 (ΔAUCadj = 0.021; 95% CI of the difference (95% CIdiff) = 0.0046–0.038) but not PRS11 (ΔAUCadj= 0.008; 95% CIdiff= –0.003–0.019). The overall fit of the longitudinal linear mixed model for %EBWL showed a significant increase after addition of PRS₁₈₆ (–2 log-likelihood = 12.3; P = 0.002) and PRS11 (–2 log-likelihood = 9.9; P = 0.007). A significant interaction with postsurgery time was found for PRS₁₈₆ (β = –0.003; P = 0.008) and PRS₁₁ (β = –0.008; P = 0.03). The inclusion of PRS₁₈₆ and PRS₁₁ into the model improved the cost-effectiveness of bariatric surgery by reducing the percentage of false negatives from 20.4% to 10.9% and 10.2%, respectively. CONCLUSION. These results revealed that genetic background has a significant impact on weight loss after biliopancreatic diversion with duodenal switch. Likewise, the improvement in weight loss prediction after addition of polygenic risk scores is cost-effective, suggesting that genetic testing could potentially be used in the presurgical assessment of patients with severe obesity.
  • Publication
    Accès libre
    Prevention of potential adverse metabolic effects of a supplementation with omega-3 fatty acids using a genetic score approach
    (Karger, 2019-11-29) Franck, Maximilien; Guénard, Frédéric; Toro Martin, Juan de; Rudkowska, Iwona; Lamarche, Benoît; Lemieux, Simone; Vohl, Marie-Claude; Couture, Patrick
    Introduction: The consumption of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) has been reported to have beneficial health effects, notably, by reducing plasma triglyceride levels. Nonetheless, a concomitant decrease in insulin sensitivity has also been observed, but is highly variable among subjects. Herein, we aimed to determine the importance of the genetic background in the interindividual variability of the insulin sensitivity response following an n-3 PUFA supplementation. Methods: A total of 210 participants completed a 6-week n-3 PUFA supplementation with 5 g/day of fish oil (providing 1.9–2.2 g of eicosapentaenoic acid + 1.1 g of docosahexaenoic acid). Insulin resistance was estimated by the homeostatic model assessment (HOMA-IR), and participants were further classified as high-risk or low-risk depending on their HOMA-IR change following the n-3 PUFA supplementation, as compared to pre-supplementation values. Genome-wide genotyping data were obtained for 138 participants using HumanOmni-5-Quad BeadChips containing 4,301,331 single nucleotide polymorphisms. A genome-wide association analysis (GWAS) was carried out between high-risk and low-risk participants. The population study was split into training (60%) and testing (40%) datasets to assess the predictive accuracy of a genetic risk score (GRS) constructed by summing the number of risk alleles. Results: Following the n-3 PUFA supplementation, 32 participants had increased HOMA-IR as compared to initial values and were classified as high risk (23.2%), whereas remaining subjects were classified as low risk (n = 106, 76.8%). A total of 8 loci had frequency differences between high-risk and low-risk participants at a suggestive GWAS association threshold (p value <1 × 10–5). After applying 10-fold cross validation, the GRS showed a significant association with the risk of increased HOMA-IR in the testing dataset (OR = 3.16 [95% CI, 1.85–7.14]), with a predictive accuracy of 0.85, and explained 40% of variation in HOMA-IR change. Conclusions: These results suggest that the genetic background has a relevant role in the interindividual variability observed in the insulin sensitivity response following an n-3 PUFA supplementation. Subjects being at risk of insulin sensitivity lowering following an n-3 PUFA supplementation may be identified using genetic-based precision nutrition approaches
  • Publication
    Accès libre
    Genome-wide association study of dietary pattern scores
    (MDPI, 2017-06-23) Guénard, Frédéric; Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Vohl, Marie-Claude; Couture, Patrick
    Dietary patterns, representing global food supplies rather than specific nutrients or food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality. The contribution of genetic factors in the determination of food intakes, preferences and dietary patterns has been previously established. The current study aimed to identify novel genetic factors associated with reported dietary pattern scores. Reported dietary patterns scores were derived from reported dietary intakes for the preceding month and were obtained through a food frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of 141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations (p < 1 × 10−5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these, SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were also observed from SNP-surrounding sequences. Results from the current GWAS study suggest an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose metabolism and food-induced response in the brain in the adoption of dietary patterns.
  • Publication
    Accès libre
    Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids : the 2 ComparED study
    (BioMed Central Ltd., 2020-06-15) Guénard, Frédéric; Vallée-Marcotte, Bastien; Toro Martin, Juan de; Lamarche, Benoît; Allaire, Janie; Vohl, Marie-Claude; Couture, Patrick
    Background : We previously built a genetic risk score (GRS) highly predictive of the plasma triglyceride (TG) response to an omega-3 fatty acid (n-3 FA) supplementation from marine sources. The objective of the present study was to test the potential of this GRS to predict the plasma TG responsiveness to supplementation with either eicosapentaenoic (EPA) or docosahexaenoic (DHA) acids in the Comparing EPA to DHA (ComparED) Study. Methods : The ComparED Study is a double-blind, controlled, crossover trial, with participants randomized to three supplemented phases of 10 weeks each: (1) 2.7 g/day of DHA, (2) 2.7 g/day of EPA, and (3) 3 g/day of corn oil (control), separated by 9-week washouts. The 31 SNPs used to build the previous GRS were genotyped in 122 participants of the ComparED Study using TaqMan technology. The GRS for each participant was computed by summing the number of rare alleles. Ordinal and binary logistic models, adjusted for age, sex, and body mass index, were used to calculate the ability of the GRS to predict TG responsiveness. Results : The GRS predicted TG responsiveness to EPA supplementation (p = 0.006), and a trend was observed for DHA supplementation (p = 0.08). The exclusion of participants with neutral TG responsiveness clarified the association patterns and the predictive capability of the GRS (EPA, p = 0.0003, DHA p = 0.01). Conclusion : Results of the present study suggest that the constructed GRS is a good predictor of the plasma TG response to supplementation with either DHA or EPA.
  • Publication
    Accès libre
    Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages
    (Springer-Verlag, 2017-02-21) Guénard, Frédéric; Allam-Ndoul, Bénédicte; Barbier, Olivier; Vohl, Marie-Claude
    Background: Inflammation plays a central role in chronic diseases occurring in the contemporary society. The health benefits of omega-3 (n-3) fatty acids (FAs), mostly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been reported. However, their mechanisms of action are poorly understood. We explored dose and time effects of EPA, DHA, and a mixture of EPA + DHA on the expression of inflammatory genes in stimulated macrophages. Methods: Lipopolysaccharide was used to stimulate human THP-1 macrophages. Cells were incubated in different conditions in the presence of n-3 FAs and LPS, and mRNA levels of inflammatory genes were measured by real-time PCR. Cytokine levels in culture media were measured. Results: The mixture of EPA + DHA had a more effective inhibitory effect than either DHA or EPA alone, DHA being more potent than EPA. For both EPA and DHA, 75 μM of FAs had a more important anti-inflammatory effect than 10 or 50 μM. For gene expression, EPA had the greater action during the post-incubation (after LPS treatment) condition while DHA and EPA + DHA were more potent during the co-incubation (n-3 FAs and LPS). Cytokine concentrations decreased more markedly in the co-incubation condition. Conclusions: These results suggest that in stimulated macrophages, expression levels of genes involved in inflammation are influenced by the dose, the type of n-3 FAs, and the time of incubation.
  • Publication
    Accès libre
    The challenge of stratifying obesity : attempts in the Quebec family study
    (Frontiers Research Foundation, 2019-10-10) Guénard, Frédéric; Bouchard, Claude; Toro Martin, Juan de; Pérusse, Louis; Tremblay, Angelo; Vohl, Marie-Claude
    Background and aims: Obesity is a major health problem worldwide. Given the heterogeneous obesity phenotype, an optimal obesity stratification would improve clinical management. Since obesity has a strong genetic component, we aimed to develop a polygenic risk score (PRS) to stratify obesity according to the genetic background of the individuals. Methods: A total of 231 single nucleotide polymorphisms (SNP) significantly associated to body mass index (BMI) from 21 genome-wide association studies were genotyped or imputed in 881 subjects from the Quebec Family Study (QFS). The population was randomly split into discovery (80%; n = 704) and validation (20%; n = 177) samples with similar obesity (BMI ≥ 30) prevalence (27.8% and 28.2%, respectively). Family-based associations with obesity were tested for every SNP in the discovery sample and a weighed and continuous PRS231 was constructed. Generalized linear mixed effects models were used to test the association of PRS231 with obesity in the QFS discovery sample and validated in the QFS replication sample. Furthermore, the Fatty Acid Sensor (FAS) Study (n = 141; 27.7% obesity prevalence) was used as an independent sample to replicate the results. Results: The linear trend test demonstrated a significant association of PRS231 with obesity in the QFS discovery sample (ORtrend = 1.19 [95% CI, 1.14-1.24]; P = 2.0x10-16). We also found that the obesity prevalence was significantly greater in the higher PRS231 quintiles compared to the lowest quintile. Significant and consistent results were obtained in the QFS validation sample for both the linear trend test (ORtrend = 1.16 [95% CI, 1.07-1.26]; P = 6.7x10-4), and obesity prevalence across quintiles. These results were partially replicated in the FAS sample (ORtrend = 1.12 [95% CI, 1.02-1.24]; P = 2.2x10-2). PRS231 explained 7.5%, 3.2%, and 1.2% of BMI variance in QFS discovery, QFS validation, and FAS samples, respectively. Conclusions: These results revealed that genetic background in the form of a 231 BMI-associated PRS has a significant impact on obesity, but a limited potential to accurately stratify it. Further studies are encouraged on larger populations.