Personne :
Gagnon, Dave

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Gagnon
Prénom
Dave
Affiliation
Département de neurobiologie, Faculté de médecine, Université Laval
ISNI
ORCID
Identifiant Canadiana
ncf11914200
person.page.name

Résultats de recherche

Voici les éléments 1 - 8 sur 8
  • Publication
    Restreint
    A dense cluster of D1+ cells in the mouse nucleus accumbens
    (2017-01-01) Gagnon, Dave; Beaulieu, Jean Martin; Sánchez, Maria Gabriela; Parent, Martin; Petryszyn, Sarah; Parent, André
    The striatum is known to be largely composed of intermingled medium-sized projection neurons expressing either the D1 or the D2 dopamine receptors. In the present study, we took advantage of the double BAC Drd1a-TdTomato/Drd2-GFP (D1 /D2 ) transgenic mice to reveal the presence of a peculiar cluster of densely-packed D1 + cells located in the shell compartment of the nucleus accumbens. This spherical cluster has a diameter of 110 µm and is exclusively composed by D1 + cells, which are all immunoreactive for the neuronal nuclear marker (NeuN). However, in contrast to other D1 + or D2 + striatal cells, those that form the accumbens cluster are devoid of calbindin (CB) and DARPP-32, two faithful markers for striatal projection neurons. Using GAD-GFP transgenic mice, we confirm the GABAergic nature of the D1 + clustered neurons. Intracellular injections from fixed brain slices indicate that these neurons are endowed with distinctive morphological features, including a small (5-6 µm), round cell body giving rise to a single primary dendrite that branches into two secondary processes. Single-neuronal injections combined to electron microscopy reveal the existence of GAP junctions linking these D1 + cells. Based on their location, morphological characteristics and neurochemical phenotype, we conclude that the D1 + accumbens cluster form a highly compact group of small neurons distinct from the larger and more diffusely distributed D1 + or D2 + striatal projection neurons that surround it. This remarkable nucleus might play a crucial role in the limbic function of the murine striatum.
  • Publication
    Accès libre
    Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice
    (Nature Publishing Group, 2017-01-27) Gagnon, Dave; De Koninck, Yves; Beaulieu, Jean Martin; Sánchez, Maria Gabriela; Parent, Martin; Petryszyn, Sarah; Parent, André; Bories, Cyril
    The loss of nigrostriatal dopamine neurons in Parkinson’s disease induces a reduction in the number of dendritic spines on medium spiny neurons (MSNs) of the striatum expressing D1 or D2 dopamine receptor. Consequences on MSNs expressing both receptors (D1/D2 MSNs) are currently unknown. We looked for changes induced by dopamine denervation in the density, regional distribution and morphological features of D1/D2 MSNs, by comparing 6-OHDA-lesioned double BAC transgenic mice (Drd1a-tdTomato/Drd2-EGFP) to sham-lesioned animals. D1/D2 MSNs are uniformly distributed throughout the dorsal striatum (1.9% of MSNs). In contrast, they are heterogeneously distributed and more numerous in the ventral striatum (14.6% in the shell and 7.3% in the core). Compared to D1 and D2 MSNs, D1/D2 MSNs are endowed with a smaller cell body and a less profusely arborized dendritic tree with less dendritic spines. The dendritic spine density of D1/D2 MSNs, but also of D1 and D2 MSNs, is significantly reduced in 6-OHDA-lesioned mice. In contrast to D1 and D2 MSNs, the extent of dendritic arborization of D1/D2 MSNs appears unaltered in 6-OHDA-lesioned mice. Our data indicate that D1/D2 MSNs in the mouse striatum form a distinct neuronal population that is affected differently by dopamine deafferentation that characterizes Parkinson’s disease.
  • Publication
    Accès libre
    Evidence for sprouting of dopamine and serotonin axons in the pallidum of Parkinsonian monkeys
    (Frontiers Research Foundation, 2018-05-15) Gagnon, Dave; Whissel, Carl; Di Paolo, Thérèse; Parent, Martin; Eid, Lara; Parent, André; Coudé, Dymka
    This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease.
  • Publication
    Accès libre
    Plasticité adaptative de la microcircuiterie neuronale des ganglions de la base dans la maladie de Parkinson
    (2018) Gagnon, Dave; Parent, Martin
    Les ganglions de la base (GB) sont formés de structures sous-corticales essentielles à un comportement psychomoteur normal. Le dérèglement d’une seule de ces composantes provoque un comportement moteur inadapté qui peut être très handicapant. La maladie de Parkinson est la pathologie neurodégénérative la plus fréquente affectant les GB. Elle est principalement caractérisée par la dégénérescence progressive des neurones dopaminergiques (DA) de la substance noire pars compacta provoquant l’apparition de symptômes moteurs tels que la bradykinésie, la rigidité musculaire et le tremblement au repos. Cependant, le bouleversement majeur de l’innervation DA des GB conduit également à plusieurs autres changements neuroadaptatifs et compensatoires. Les travaux de recherche décrits dans cette thèse traitent de plusieurs de ces changements qui affectent la microcircuiterie des ganglions de la base et qui se produisent en marge de la perte massive des neurones DA. Tout d’abord, une étude portant sur l’innervation à sérotonine (5-HT) des ganglions de la base en condition normale et effectuée à partir de cerveaux post-mortem humains sera présentée. Cette étude immunohistochimique a permis de décrire la trajectoire qu’empruntent les faisceaux d’axones 5-HT en provenance des noyaux du raphé du tronc cérébral afin d’innerver les différentes composantes des GB. Ensuite, une description plus précise de l’arborisation axonale unitaire des neurones 5-HT provenant du noyau raphé dorsal chez le rat sera apportée. L’injection par microiontophorèse d’un traceur antérograde a permis de marquer et de reconstruire en trois dimensions l’arborisation axonale complète de plusieurs neurones, mettant ainsi en lumière l’hétérogénéité des projections 5-HT ascendantes. Les études seront ensuite présentées ont été effectuées à partir de modèles animaux de la maladie de Parkinson et mettent en valeur d’importants changements compensatoires. Ces travaux ont permis d’identifier de nouveaux phénomènes neuroadaptatifs concernant l’innervation DA et 5-HT du striatum et du globus pallidus (GP) suite à une lésion DA chez le singe cynomolgus (Macaca fascicularis). L’immunohistochimie combinée à une méthode quantitative stéréologique a conduit à mettre en évidence un bourgeonnement important des axones 5-HT dans le striatum ainsi que dans le GP. Une description précise en microscopie électronique de la structure morphologique fine suggère que les nouvelles varicosités axonales 5-HT retrouvées dans le striatum sont fonctionnelles et présentent davantage de contacts synaptiques, en lien avec un phénomène de bourgeonnement axonal. Contrairement à la dénervation DA massive du striatum, nos résultats indiquent une augmentation de près de dix fois le nombre d’axones DA dans le segment interne du GP. Finalement, des reconstructions du domaine somatodendritiques de neurones du striatum effectuées suite à l’injection intracellulaire de fluorophores ont mis en lumière un nouveau sous-type de neurones de projection du striatum. Ces injections effectuées chez un modèle murin de la maladie de Parkinson nous permettent de conclure que ce sous-type de neurones est affecté différemment par une dénervation DA. Dans l’ensemble, les travaux présentés dans cette thèse soulèvent l’importance de l’innervation DA et 5-HT dans le fonctionnement normal des GB, ainsi que les changements neuroadaptatifs qui surviennent dans la maladie de Parkinson. La description précise de ces changements morphologiques doit être prise en compte afin de mieux comprendre l’expression des symptômes moteurs et non-moteurs de la maladie de Parkinson et expliquer l’apparition des dyskinésies qui surviennent chez une vaste majorité des patients parkinsoniens suite à l’administration quotidienne de L-Dopa, principal traitement pharmacologique de la maladie.
  • Publication
    Accès libre
    Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions
    (Public Library of Science, 2014-02-04) Gagnon, Dave; Parent, Martin
    This study aimed at providing the first detailed morphological description, at the single-cell level, of the rat dorsal raphe nucleus neurons, including the distribution of the VGLUT3 protein within their axons. Electrophysiological guidance procedures were used to label dorsal raphe nucleus neurons with biotinylated dextran amine. The somatodendritic and axonal arborization domains of labeled neurons were reconstructed entirely from serial sagittal sections using a computerized image analysis system. Under anaesthesia, dorsal raphe nucleus neurons display highly regular (1.72±0.50 Hz) spontaneous firing patterns. They have a medium size cell body (9.8±1.7 µm) with 2–4 primary dendrites mainly oriented anteroposteriorly. The ascending axons of dorsal raphe nucleus are all highly collateralized and widely distributed (total axonal length up to 18.7 cm), so that they can contact, in various combinations, forebrain structures as diverse as the striatum, the prefrontal cortex and the amygdala. Their morphological features and VGLUT3 content vary significantly according to their target sites. For example, high-resolution confocal analysis of the distribution of VGLUT3 within individually labeled-axons reveals that serotonin axon varicosities displaying VGLUT3 are larger (0.74±0.03 µm) than those devoid of this protein (0.55±0.03 µm). Furthermore, the percentage of axon varicosities that contain VGLUT3 is higher in the striatum (93%) than in the motor cortex (75%), suggesting that a complex trafficking mechanism of the VGLUT3 protein is at play within highly collateralized axons of the dorsal raphe nucleus neurons. Our results provide the first direct evidence that the dorsal raphe nucleus ascending projections are composed of widely distributed neuronal systems, whose capacity to co-release serotonin and glutamate varies from one forebrain locus to the other.
  • Publication
    Restreint
    Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys
    (Springer, 2015-10-13) Gagnon, Dave; Di Paolo, Thérèse; Parent, Martin; Grégoire, Laurent
    The chronic use of L-Dopa for alleviating the motor symptoms of Parkinson’s disease often produces adverse effects such as dyskinesia. Unregulated release of dopamine by serotonin axons following L-Dopa administration is a major presynaptic determinant of these abnormal involuntary movements. The present study was designed to characterize the reorganization of serotonin striatal afferents following dopaminergic denervation in a primate model of Parkinson’s disease. Our sample comprised eight cynomolgus monkeys: four that were rendered parkinsonian following MPTP administration and four controls. The state of striatal serotonin and dopamine innervation was evaluated by means of immunohistochemistry with antibodies against serotonin transporter (SERT) and tyrosine hydroxylase. A detailed stereological investigation revealed a significant increase in the number of serotonin axon varicosities in the striatum of MPTP-intoxicated monkeys. This increase is particularly pronounced in the sensorimotor territory of the striatum, where the dopamine denervation is the most severe. Electron microscopic examinations indicate that, in contrast to the nucleus accumbens where the dopamine innervation is preserved, the SERT+ axon varicosities observed in the sensorimotor territory of the putamen establish twice as many synaptic contacts in MPTP-intoxicated monkeys than in controls. These findings demonstrate the highly plastic nature of the serotonin striatal afferent projections, a feature that becomes particularly obvious in the absence of striatal dopamine. Although the number of dorsal raphe serotonin neurons remains constant in parkinsonian monkeys, as shown in the present study, their ascending axonal projections undergo marked proliferative and synaptic adaptive changes that might play a significant role in the potential unregulated and ectopic release of dopamine by serotonin axons after L-Dopa treatment of Parkinson’s disease.
  • Publication
    Restreint
    Serotonin innervation of basal ganglia in monkeys and humans
    (Wiley & Sons, 2011-06-01) Wallman, Marie-Josée; Gagnon, Dave; Parent, Martin; Parent, André
    This review paper summarizes our previous contributions to the study of serotonin (5-hydroxytryptamine; 5-HT) innervation of basal ganglia in human and nonhuman primates under normal conditions. We have visualized the 5-HT neuronal system in squirrel monkey (Saimiri sciureus) and human postmortem materials with antibodies directed against either 5-HT, 5-HT transporter (SERT) or 5-HT synthesizing enzyme tryptophan hydroxylase (TPH). Confocal microscopy was used to compare the distribution of 5-HT and dopamine (DA; tyrosine hydroxylase-immunolabeled) axons in human, while the ultrastructural features of 5-HT axon terminals in monkey subthalamic nucleus were characterized at electron microscopic level. In monkeys and humans, midbrain raphe neurons emit axons that traverse the brainstem via the transtegmental system, ascend within the medial forebrain bundle and reach their targets by coursing along the major output pathways of the basal ganglia. These 5-HT axons arborize in virtually all basal ganglia components with the substantia nigra receiving the densest innervation and the striatum the most heterogeneous one. Although the striatum – the major basal ganglia input structure – appears to be a common termination site for many of 5-HT ascending axons, our results reveal that the widely distributed 5-HT neuronal system can also act directly upon neurons located within the two major output structures of the basal ganglia, namely the internal pallidum and the substantia nigra pars reticulata in monkeys and humans. This system also has a direct access to neurons of the DA nigrostriatal pathway, a finding that underlines the importance of the 5-HT/DA interactions in the physiopathology of basal ganglia.
  • Publication
    Restreint
    Serotonin innervation of human basal ganglia
    (European Neuroscience Association by Oxford University Press, 2011-03-07) Wallman, Marie-Josée; Gagnon, Dave; Parent, Martin
    This study aimed to provide a first detailed description of the serotonin (5-hydroxytryptamine, 5-HT) innervation of the human basal ganglia under nonpathological conditions. We applied an immunohistochemical approach to postmortem human brain material with antibodies directed against the 5-HT transporter and the 5-HT-synthesizing enzyme (tryptophane hydroxylase) to visualize 5-HT axons and cell bodies, respectively. Adjacent sections were immunostained for tyrosine hydroxylase to compare the distribution of 5-HT axons with that of dopamine axons. Human basal ganglia are innervated by 5-HT axons that emerge chiefly from the dorsal and, less abundantly, from the median raphe nuclei. These axons form thick ascending fascicles that fragment themselves as they penetrate the decussation of the superior cerebellar peduncle. They regroup within the ventral tegmental area and ascend along the medial forebrain bundle, immediately beneath the dopamine ascending fibers. At regular intervals along their course, 5-HT axons detach themselves from the medial forebrain bundle and sweep laterally to arborize within all basal ganglia components, where they display highly variable densities and patterns of innervation. The substantia nigra is the most densely innervated component of the basal ganglia, whereas the caudate nucleus is more heterogeneously innervated than the putamen and pallidum. The subthalamic nucleus harbors 5-HT-immunoreactive fibers that display a mediolateral-decreasing gradient. The fact that all components of human basal ganglia receive a dense 5-HT input indicates that, in concert with dopamine, 5-HT plays a crucial role in the functional organization of these motor-related structures, which are often targeted in neurodegenerative diseases.