Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Ndiaye, Djibril

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Ndiaye

Prénom

Djibril

Affiliation

Université Laval. Département de mathématiques et de statistique

ISNI

ORCID

Identifiant Canadiana

ncf13702232

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationAccès libre
    Bayesian adaptive variable selection in linear models : a generalization of Zellner's informative g-prior
    (2022) Ndiaye, Djibril; Khadraoui, Khader
    Bayesian inference is about recovering the full conditional posterior distribution of the parameters of a statistical model. This exercise, however, can be challenging to undertake if the model specification is not available a priori, as is typically the case. This thesis proposes a new framework to select the subset of regressors that are the relevant features that explain a target variable in linear regression models. We generalize Zellner's g-prior with a random matrix, and we present a likelihood-based search algorithm, which uses Bayesian tools to compute the posterior distribution of the model parameters over all possible models generated, based on the maximum a posteriori (MAP). We use Markov chain Monte Carlo (MCMC) methods to gather samples of the model parameters and specify all distributions underlying these model parameters. We then use these simulations to derive a posterior distribution for the model parameters by introducing a new parameter that allows us to control how the selection of variables is done. Using simulated datasets, we show that our algorithm yields a higher frequency of choosing the correct variables and has a higher predictive power relative to other widely used variable selection models such as adaptive Lasso, Bayesian adaptive Lasso, and relative to well-known machine learning algorithms. Taken together, this framework and its promising performance under various model environments highlight that simulation tools and Bayesian inference methods can be efficiently combined to deal with well-known problems that have long loomed the variable selection literature.