Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Gagnon, Stéphane

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Gagnon

Prénom

Stéphane

Affiliation

Université Laval. Centre d'optique, photonique et laser

ISNI

ORCID

Identifiant Canadiana

ncf13679770

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
En cours de chargement...
Vignette d'image
PublicationAccès libre

Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers

2021-04-27, Fuertes, Victor, Gagnon, Stéphane, Grégoire, Nicolas, Labranche, Philippe, Ledemi, Yannick, LaRochelle, Sophie, Messaddeq, Younès, Wang, Ruohui

Rayleigh scattering enhanced nanoparticles-doped optical fibers are highly promising for distributed sensing applications, however, the high optical losses induced by that scattering enhancement restrict considerably their sensing distance to few meters. Fabrication of long-range distributed optical fiber sensors based on this technology remains a major challenge in optical fiber community. In this work, it is reported the fabrication of low-loss Ca-based nanoparticles doped silica fibers with tunable Rayleigh scattering for long-range distributed sensing. This is enabled by tailoring nanoparticle features such as particle distribution size, morphology and density in the core of optical fibers through preform and fiber fabrication process. Consequently, fibers with tunable enhanced backscattering in the range 25.9-44.9 dB, with respect to a SMF-28 fiber, are attained along with the lowest two-way optical losses, 0.1-8.7 dB/m, reported so far for Rayleigh scattering enhanced nanoparticles-doped optical fibers. Therefore, the suitability of Ca-based nanoparticles-doped optical fibers for distributed sensing over longer distances, from 5 m to more than 200 m, becomes possible. This study opens a new path for future works in the field of distributed sensing, since these findings may be applied to other nanoparticles-doped optical fibers, allowing the tailoring of nanoparticle properties, which broadens future potential applications of this technology.

En cours de chargement...
Vignette d'image
PublicationAccès libre

Tunable distributed sensing performance in Ca-based nanoparticle-doped optical fibers

2022-03-04, Gagnon, Stéphane, Grégoire, Nicolas, Morency, Steeve, Ledemi, Yannick, Fuertes, Victor, LaRochelle, Sophie, Messaddeq, Younès

Rayleigh scattering enhanced nanoparticle-doped optical fibers is a technology very promising for distributed sensing applications, however, it remains largely unexplored. This work demonstrates for the first time the possibility of tuning Rayleigh scattering and optical losses in Ca-based nanoparticle-doped silica optical fibers by controlling the kinetics of the re-nucleation process that nanoparticles undergo during fiber drawing by controlling preform feed, drawing speed and temperature. A 3D study by SEM, FIB-SEM and optical backscatter reflectometry (OBR) reveals an early-time kinetics at 1870 °C, with tunable Rayleigh scattering enhancement 43.2–47.4 dB, regarding a long-haul single mode fiber, SMF-28, and associated sensing lengths of 3–5.5 m. At 2065 °C, kinetics is slower and nanoparticle dissolution is favored. Consequently, enhanced scattering values of 24.9–26.9 dB/m and sensing lengths of 135–250 m are attained. Finally, thermal stability above 500 °C and tunable distributed temperature sensitivity are proved, from 18.6 pm/°C to 23.9 pm/°C, ∼1.9–2.4 times larger than in a SMF-28. These results show the promising future of Rayleigh scattering enhanced nanoparticle-doped optical fibers for distributed sensing.