Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Bernard, Geneviève

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Bernard

Prénom

Geneviève

Affiliation

Département de chimie, Faculté des sciences et de génie, Université Laval

ISNI

ORCID

Identifiant Canadiana

ncf11854977

person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • PublicationRestreint
    Production of a bilayered self-assembled skin substitute using a tissue-engineered acellular dermal matrix
    (Mary Ann Liebert, 2015-09-28) Beaudoin-Cloutier, Chanel; Bernard, Geneviève; Germain, Lucie; Larouche, Danielle; Auger, François A.; Gauvin, Robert; Guignard, Rina; Lacroix, Dan.; Moulin, Véronique; Lavoie, Amélie
    Our bilayered self-assembled skin substitutes (SASS) are skin substitutes showing a structure and functionality very similar to native human skin. These constructs are used, in life-threatening burn wounds, as permanent autologous grafts for the treatment of such affected patients even though their production is exacting. We thus intended to shorten their current production time to improve their clinical applicability. A self-assembled decellularized dermal matrix (DM) was used. It allowed the production of an autologous skin substitute from patient's cells. The characterization of SASS reconstructed using a decellularized dermal matrix (SASS-DM) was performed by histology, immunofluorescence, transmission electron microscopy, and uniaxial tensile analysis. Using the SASS-DM, it was possible to reduce the standard production time from about 8 to 4 and a half weeks. The structure, cell differentiation, and mechanical properties of the new skin substitutes were shown to be similar to the SASS. The decellularization process had no influence on the final microstructure and mechanical properties of the DM. This model, by enabling the production of a skin substitute in a shorter time frame without compromising its intrinsic tissue properties, represents a promising addition to the currently available burn and wound treatments.