Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Fu, Qilan

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Fu

Prénom

Qilan

Affiliation

Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval

ISNI

ORCID

Identifiant Canadiana

ncf11915161

person.page.name

Résultats de recherche

Voici les éléments 1 - 5 sur 5
  • PublicationAccès libre
    Comportement physique, chimique et mécanique du bois suite à la compression sous l'effet de la chaleur et de l'humidité
    (2019) Fu, Qilan; Laghdir, Aziz; Cloutier, Alain
    L'objectif principal de cette recherche est d'établir une meilleure compréhension du procédé de densification thermo-hygromécanique (THM) et du comportement physique, chimique et mécanique du bois dans des conditions thermiques et hygrométriques diverses. La densification THM est un procédé complexe impliquant simultanément, les phénomènes couplés de transfert de chaleur et de masse, plusieurs mécanismes de déformation instantanée et dépendante du temps ainsi que des changements physiques, chimiques et mécaniques dans le bois. Malgré de nombreuses recherches au cours des dernières décennies, les mécanismes fondamentaux du comportement en compression du bois soumis à une charge et à une variation de sa teneur en humidité demeurent en grande partie méconnus. La densification et la relaxation des contraintes sont deux phénomènes très complexes en raison de la nature des déformations réversibles et permanentes qui se produisent simultanément à diverses étapes du procédé de pressage. De plus, les déformations sont affectées par de nombreux facteurs physiques et le comportement de compression à son tour affecte l'ensemble du système physique. Dans cette étude, le procédé de densification THM a été optimisé en utilisant la méthode des surfaces de réponse (RSM) pour étudier les effets de la température et de la durée du traitement sur la dureté et le retour viscoélastique en épaisseur et analyser les interactions entre ces paramètres physiques. Plusieurs propriétés physiques et mécaniques, telles que le profil de densité, le retour viscoélastique en épaisseur, la dureté et la résistance à la flexion des échantillons témoins et du bois densifié THM ont été évaluées et comparées. Les modifications chimiques de surface des échantillons densifiés ont été examinées en utilisant la spectroscopie infrarouge par transformée de Fourier (FTIR), la spectroscopie photoélectronique X (XPS) et la pyrolyse-chromatographie en phase gazeuse-spectrométrie de masse (Py-GC/MS). Par ailleurs, les évolutions de la masse volumique anhydre, la perméabilité et la conductivité thermique pendant le procédé de densification THM ont été déterminées expérimentalement. Les résultats suggèrent que les conditions de densification optimales résultant en une dureté élevée et un faible retour viscoélastique en épaisseur ont été obtenues à une température de 180 °C, un temps de densification de 1004 s et un temps de post-traitement de 1445 s. La densité des échantillons densifiés a considérablement augmenté par rapport à l'échantillon témoin. La vapeur et la température ont des impacts importants sur les propriétés mécaniques, chimiques et la stabilité dimensionnelle du bois d'érable à sucre. Un pourcentage plus élevé de perte de masse a été trouvé à 220 °C, résultant en une diminution évidente de la masse volumique et de la dureté du bois, alors qu’un léger retour viscoélastique en épaisseur a été observé pour l'érable à sucre densifié à la même température. De plus, la haute température et la vapeur sont bénéfiques pour fixer la déformation de compression. La vapeur pourrait faciliter la dégradation avancée des polymères du bois. Le traitement de densification THM a entraîné des modifications chimiques importantes de la surface du bois. Les résultats des spectres ATR-FTIR ont confirmé la décomposition des hémicelluloses et l’augmentation de la teneur relative en cellulose et lignine de la surface du bois. Les résultats du Py-GC/MS et du XPS en terme d'augmentation du rapport O/C indiquent que des substances chimiques contenant une fonctionnalité oxygénée se sont formées après densification. Le traitement de densification a favorisé la dépolymérisation des hémicelluloses et de la cellulose, ce qui a entraîné une augmentation de la teneur en sucres anhydres (lévoglucosane) de la surface du bois. La densification a également facilité le clivage de la chaîne latérale de la lignine, ce qui a entraîné une augmentation de la teneur en unités phényle avec chaînes courtes. La masse volumique anhydre n'a pas augmenté avec la diminution de l'épaisseur. La perméabilité au gaz de l'échantillon témoin peut être 5 à 40 fois plus élevée que celle du bois densifié, ce qui indique que le volume des vides du bois diminue considérablement après le traitement de densification. La conductivité thermique augmente avec l'augmentation de la teneur en humidité de 0,5 à 1,5% par pourcentage d'augmentation de la teneur en humidité pour le bois densifié. La conductivité thermique des échantillons densifiés était plus petite que celle des échantillons de contrôle.
  • PublicationAccès libre
    Heat and mass transfer properties of sugar maple wood treated by the thermo-hygro-mechanical densification process
    (MDPI, 2018-07-24) Fu, Qilan; Laghdir, Aziz; Cloutier, Alain
    This study investigated the evolution of the density, gas permeability, and thermal conductivity of sugar maple wood during the thermo-hygro-mechanical densification process. The results suggested that the oven-dry average density of densified samples was significantly higher than that of the control samples. However, the oven-dry density did not show a linear increase with the decrease of wood samples thickness. The radial intrinsic gas permeability of the control samples was 5 to 40 times higher than that of densified samples, which indicated that the void volume of wood was reduced notably after the densification process. The thermal conductivity increased by 0.5–1.5 percent for an increase of one percent moisture content for densified samples. The thermal conductivity of densified wood was lower than that of the control samples. The densification time had significant effects on the oven-dry density and gas permeability. Both densification time and moisture content had significant effects on thermal conductivity but their interaction effect was not significant.
  • PublicationAccès libre
    Optimization of the thermo-hygromechanical (THM) : process for sugar maple wood densification
    (Dept. of Wood and Paper Science College of Natural Resources North Carolina State University, 2016-08-31) Fu, Qilan; Laghdir, Aziz; Cloutier, Alain
    Densified wood is a promising engineered wood product, especially for heavy-duty applications. This study optimized the temperature and duration of the thermo-hygromechanical (THM) densification process applied to sugar maple (Acer saccharum Marsh.) wood. The response variables studied were compression set recovery and hardness. The THM densification process was performed at three temperatures (180°C, 200 °C, and 220 °C), densification times (450 s, 900 s, and 1350 s), and post-treatment times (900 s, 1350 s, and 1800 s). Response surface methodology was used to analyze the impact of the three parameters. The effect of temperature on the density profile across thickness was also determined. The results suggested that the optimum densification conditions resulting in high hardness and low compression set recovery were obtained at a temperature of 180 °C, a densification time of 1004 s, and a post-treatment time of 1445 s. Additionally, the density of the densified samples was relatively homogeneous across thickness, although it was dramatically increased compared with control samples. However, density did not increase linearly with temperature. A much higher weight loss occurred at 220 °C, resulting in a significant decrease in density and hardness, whereas little compression set recovery was observed for sugar maple densified at this temperature.
  • PublicationAccès libre
    Effects of heat and steam on the mechanical properties and dimensional stability of thermo-hygromechanically densified sugar maple wood
    (Dept. of Wood and Paper Science, College of Natural Resources, North Carolina State University, 2017-10-19) Fu, Qilan; Laghdir, Aziz; Cloutier, Alain
    Effects of heat and steam were investigated relative to the mechanical properties and dimensional stability of thermo-hygromechanically-densified sugar maple wood (Acer saccharum Marsh.). The densification process was performed at four temperatures (180 °C, 190 °C, 200 °C, and 210 °C) with and without steam. The hardness, bending strength, bending stiffness, and compression set recovery of the control and densified samples were determined. The effects of heat and steam on the density profile of the samples across thickness were also investigated. The results suggested that the effects of steam on the mechanical properties and dimensional stability of sugar maple wood were more important than that of heat’s influence. Compared to the samples densified without steam, the samples densified with steam showed higher values for hardness, bending strength, bending stiffness, compression set, and density, but much lower compression set recovery when treatment temperature was below 200 °C. High temperature combined with steam contributed to decreased compression set recovery. The lowest compression set recovery was obtained after the first swelling/drying cycle for all of the treatments. A higher weight loss occurred at 210 °C, which resulted in a noticeable decrease of wood density.
  • PublicationAccès libre
    Surface chemical changes of sugar maple wood induced by thermo-hygromechanical (THM) treatment
    (MDPI, 2019-06-17) Fu, Qilan; Laghdir, Aziz; Cloutier, Alain; Stevanovic-Janezic, Tatjana
    The aim of this study was to investigate the effects of heat and steam on the chemical properties of thermo-hygromechanical (THM)-densified sugar maple wood. The THM densification process was performed at two different temperatures (180 °C and 200 °C) with and without steam. The functional groups, surface chemical composition and internal structure and components of the control and densified samples were investigated using attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray photoelectron (XPS) spectroscopy and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The obtained results suggest that the THM densification treatment resulted in significant chemical changes on the wood surface. The results of the ATR-FTIR spectra confirmed the decomposition of hemicelluloses and the relative increase of cellulose and lignin contents on the wood surface. The Py-GC/MS and XPS results show an increase of the oxygen/carbon atomic (O/C) ratio, which indicated that chemical substances containing oxygenated functionality were formed through the densification process. The densification treatment favored the depolymerization of hemicelluloses and cellulose as indicated by an increased anhydrous sugar (levoglucosan) release during the pyrolysis process. Densification also facilitated the cleavage of the lignin side chains, resulting in increased phenyl units with short chains released during the pyrolysis process.