Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Archambault, Philippe

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Archambault

Prénom

Philippe

Affiliation

Université Laval. Département de biologie

ISNI

ORCID

Identifiant Canadiana

ncf10787990

person.page.name

Résultats de recherche

Voici les éléments 1 - 3 sur 3
En cours de chargement...
Vignette d'image
PublicationAccès libre

Predator traits determine food-web architecture across ecosystems

2019-05-20, Brose, Ulrich, Archambault, Philippe, Legagneux, Pierre, Iles, Alison C.

Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.

En cours de chargement...
Vignette d'image
PublicationRestreint

Assistive robotic device : evaluation of intelligent algorithms

2018-07-01, Archambault, Philippe, Lettre, Josiane, Routhier, François, Campeau-Lecours, Alexandre, Lebrasseur, Audrey

Assistive robotic devices can be used to help people with upper body disabilities gaining more autonomy in their daily life. Although basic motions such as positioning and orienting an assistive robot gripper in space allow performance of many tasks, it might be time consuming and tedious to perform more complex tasks. To overcome these difficulties, improvements can be implemented at different levels, such as mechanical design, control interfaces and intelligent control algorithms. In order to guide the design of solutions, it is important to assess the impact and potential of different innovations. This paper thus presents the evaluation of three intelligent algorithms aiming to improve the performance of the JACO robotic arm (Kinova Robotics). The evaluated algorithms are ‘preset position’, ‘fluidity filter’ and ‘drinking mode’. The algorithm evaluation was performed with 14 motorized wheelchair’s users and showed a statistically significant improvement of the robot’s performance.

En cours de chargement...
Vignette d'image
PublicationRestreint

Shell deformity as a marker for retrospective detection of a pathogenic unicellular alga, Coccomyxa sp., in mytilid mussels : a first case study and research agenda

2019-12-16, Zuykov, Michael, Archambault, Philippe, Kolyuchkina, Galina, McKindsey, Christopher W., Gosselin, Michel, Anderson, Julia, Spiers, Graeme, Schindler, Michael

An L-shaped shell deformity (LSSD) on the posterior shell edge is known exclusively in wild mytilid mussels infected with photosynthetic Coccomyxa-like algae. LSSD forms due to the appearance of extra shell material; it only occurs if the mussel is heavily infected with the alga. Traditionally, observation of high amount of the green spots (algal colonies) on a large area of host soft tissues (most of the mantle and in adductor muscle) has been used to indicate a high infection rate. We examined 300 Mytilus spp. (100 small, 20–30 mm; 200 large, 40–60 mm) with a high degree of LSSD (parameter “d” > 5 mm) from the Lower St. Lawrence Estuary (Québec, Canada). Green spots were absent in two large mussels, and were only present along the mantle posterior edge in 14 large mussels; other individuals had high infection levels. Our observations suggest that some individuals could be in a state of remission, or, even more optimistically - mussels may be able to resist the pathogen. LSSD is the stable through-time marker for detection of mytilid mussels that are or were infected with Coccomyxa algae, and, thus, may provide information for the study of mussel immunity and control of alga distribution/migration in coastal waters worldwide.