Personne :
Archambault, Philippe

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Archambault
Prénom
Philippe
Affiliation
Université Laval. Département de biologie
ISNI
ORCID
Identifiant Canadiana
ncf10787990
person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • Publication
    Restreint
    Practical advice on monitoring of U and Pu with marine bivalve mollusks near the Fukushima Daiichi Nuclear Power Plan
    (Macmillan, 2020-01-29) Zuykov, Michael; Archambault, Philippe; Fowler, Scott W.; Spiers, Graeme; Schindler, Michael
    Following the Fukushima Daiichi nuclear power plant accident in 2011, some marine radionuclide monitoring studies report a lack of evidence for contamination of Japanese coastal waters by U and Pu, or state that marine contamination by them was negligible. Nevertheless, Fukushima-derived U and Pu were reported as associated with Cs-rich microparticles (CsMPs) found in local soil, vegetation, and river/lake sediments. Over time, CsMPs can be transported to the sea via riverine runoff where actinides, as expected, will leach. We recommend establishing a long-term monitoring of U and Pu in the nearshore area of the Fukushima Prefecture using marine bivalve mollusks; shells, byssal threads and soft tissues should all be analyzed. Here, based on results from Th biosorption experiments, we propose that U and Pu could be present at concentrations several times higher in shells with a completely destroyed external shell layer (periostracum) than in shells with intact periostracum.
  • Publication
    Restreint
    Shell deformity as a marker for retrospective detection of a pathogenic unicellular alga, Coccomyxa sp., in mytilid mussels : a first case study and research agenda
    (Academic Press, 2019-12-16) Zuykov, Michael; Archambault, Philippe; Kolyuchkina, Galina; McKindsey, Christopher W.; Gosselin, Michel; Anderson, Julia; Spiers, Graeme; Schindler, Michael
    An L-shaped shell deformity (LSSD) on the posterior shell edge is known exclusively in wild mytilid mussels infected with photosynthetic Coccomyxa-like algae. LSSD forms due to the appearance of extra shell material; it only occurs if the mussel is heavily infected with the alga. Traditionally, observation of high amount of the green spots (algal colonies) on a large area of host soft tissues (most of the mantle and in adductor muscle) has been used to indicate a high infection rate. We examined 300 Mytilus spp. (100 small, 20–30 mm; 200 large, 40–60 mm) with a high degree of LSSD (parameter “d” > 5 mm) from the Lower St. Lawrence Estuary (Québec, Canada). Green spots were absent in two large mussels, and were only present along the mantle posterior edge in 14 large mussels; other individuals had high infection levels. Our observations suggest that some individuals could be in a state of remission, or, even more optimistically - mussels may be able to resist the pathogen. LSSD is the stable through-time marker for detection of mytilid mussels that are or were infected with Coccomyxa algae, and, thus, may provide information for the study of mussel immunity and control of alga distribution/migration in coastal waters worldwide.