Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Archambault, Philippe

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Archambault

Prénom

Philippe

Affiliation

Université Laval. Département de biologie

ISNI

ORCID

Identifiant Canadiana

ncf10787990

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationRestreint
    Shell deformity as a marker for retrospective detection of a pathogenic unicellular alga, Coccomyxa sp., in mytilid mussels : a first case study and research agenda
    (Academic Press, 2019-12-16) Zuykov, Michael; Archambault, Philippe; Kolyuchkina, Galina; McKindsey, Christopher W.; Gosselin, Michel; Anderson, Julia; Spiers, Graeme; Schindler, Michael
    An L-shaped shell deformity (LSSD) on the posterior shell edge is known exclusively in wild mytilid mussels infected with photosynthetic Coccomyxa-like algae. LSSD forms due to the appearance of extra shell material; it only occurs if the mussel is heavily infected with the alga. Traditionally, observation of high amount of the green spots (algal colonies) on a large area of host soft tissues (most of the mantle and in adductor muscle) has been used to indicate a high infection rate. We examined 300 Mytilus spp. (100 small, 20–30 mm; 200 large, 40–60 mm) with a high degree of LSSD (parameter “d” > 5 mm) from the Lower St. Lawrence Estuary (Québec, Canada). Green spots were absent in two large mussels, and were only present along the mantle posterior edge in 14 large mussels; other individuals had high infection levels. Our observations suggest that some individuals could be in a state of remission, or, even more optimistically - mussels may be able to resist the pathogen. LSSD is the stable through-time marker for detection of mytilid mussels that are or were infected with Coccomyxa algae, and, thus, may provide information for the study of mussel immunity and control of alga distribution/migration in coastal waters worldwide.
  • PublicationRestreint
    Biodiversity Ecosystem Functioning (BEF) approach to further understanding aquaculture-environment interactions
    (Blackwell Publishing, 2020-02-18) Lacoste, Élise; Archambault, Philippe; McKindsey, Christopher W.
    Coastal benthic ecosystems may be impacted by numerous human activities, including aquaculture, which continues to expand rapidly. Indeed, today aquaculture worldwide provides more biomass for human consumption than do wild fisheries. This rapid development raises questions about the interactions the practice has with the surrounding environment. In order to design strategies of sustainable ecosystem exploitation and marine spatial planning, a better understanding of coastal ecosystem functioning is needed so that tools to quantify impacts of human activities, including aquaculture, may be developed. To achieve this goal, some possible directions proposed are integrated studies leading to new concepts, model development based on these concepts and comparisons of various ecosystems on a global scale. This review draws on existing literature to (i) briefly summarize the major ecological interactions between off-bottom shellfish aquaculture and the environment, (ii) introduce research on the influence of benthic diversity on ecosystem functioning (BEF relationships) and (iii) propose a holistic approach to conduct aquaculture–environment studies using a BEF approach, highlighting the need for integrated studies that could offer insights and perspectives to guide future research efforts and improve the environmental management of aquaculture.