Personne :
Power, Justine

En cours de chargement...
Photo de profil
Adresse électronique
Date de naissance
Projets de recherche
Structures organisationnelles
Fonction
Nom de famille
Power
Prénom
Justine
Affiliation
Université Laval. École d’actuariat
ISNI
ORCID
Identifiant Canadiana
ncf13692361
person.page.name

Résultats de recherche

Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Modélisation de réclamations en assurance générale avec gradient boosting et dépendance
    (2021) Power, Justine; Duchesne, Thierry; Côté, Marie-Pier
    En assurance générale, la prévision des réclamations est d'une importance capitale. Une modélisation précise des pertes futures permet aux assureurs d'offrir des prix compétitifs, de cibler les assurés les plus profitables et de conserver leur solidité financière. Le domaine de l'assurance étant en constante évolution, les actuaires doivent trouver des moyens de raffiner leurs modèles prédictifs. Dans ce mémoire, on propose un modèle hiérarchique qui améliore les modèles classiques sur deux aspects. D'abord, on considère la dépendance entre les occurrences de paiements sous différentes couvertures avec une distribution multinomiale, et entre les montants payés à l'aide de copules. Ensuite, on choisit XGBoost, une implémentation populaire du gradient boosting, pour effectuer des prévisions avec des variables explicatives, alors que la plupart des modèles actuariels utilisent les modèles linéaires généralisés. La méthode est illustrée sur un jeu de données de réclamations en assurance auto fourni par une grande compagnie d'assurance canadienne. Le nombre important d'observations et de variables explicatives justifient l'utilisation de XGBoost, qui est particulièrement efficace avec de gros jeux de données. La structure des données motive divers aspects du modèle lui procurant une flexibilité, notamment en permettant à la combinaison de couvertures payées pour une même réclamation d'influencer les relations de dépendance. Pour l'inférence sur les copules, on utilise les méthodes basées sur les rangs. Puisque la validité des estimateurs basés sur les rangs de résidus de XGBoost n'a pas été montrée dans la littérature, on étudie leur performance par simulation. On applique notre modèle sur des données test et en comparant les résultats avec ceux d'un modèle supposant l'indépendance, on remarque que notre modèle permet d'obtenir une meilleure segmentation des assurés, en plus de répliquer de manière plus adéquate la stochasticité globale des données.