Pour savoir comment effectuer et gérer un dépôt de document, consultez le « Guide abrégé – Dépôt de documents » sur le site Web de la Bibliothèque. Pour toute question, écrivez à corpus@ulaval.ca.
 

Personne :
Dong, Yanwen

En cours de chargement...
Photo de profil

Adresse électronique

Date de naissance

Projets de recherche

Structures organisationnelles

Fonction

Nom de famille

Dong

Prénom

Yanwen

Affiliation

Université Laval. Département de biologie

ISNI

ORCID

Identifiant Canadiana

ncf11926573

person.page.name

Résultats de recherche

Voici les éléments 1 - 2 sur 2
  • PublicationAccès libre
    Rôle du métabolisme carboné dans la modulation des relations source-puits et études des facteurs impliqués dans l'induction de la sénescence foliaire chez une éphémère printanière (Erythronium americanum)
    (2020) Dong, Yanwen; Lapointe, Line; Gérant, Dominique
    Certaines géophytes telles que les éphémères printanières sont connues pour mieux se développer à des températures basses, avec comme résultat de plus gros organes pérennes souterrains. Une température plus basse induit une plus longue longévité des feuilles, ce qui permet une plus grande quantité du carbone fixé qui est alloué dans le bulbe et investi principalement sous forme de stockage (amidon), ce qui augmente la quantité de réserves par rapport à une température plus élevée. Les travaux précédents suggèrent que cette croissance accrue à basse température est liée à un meilleur équilibre entre l'activité de l'organe source et celle du puits, ce qui expliquerait la durée de vie plus longue des feuilles. Dans cette étude, nous voulions approfondir notre compréhension des facteurs intrinsèques qui influencent la croissance des organes de réserve chez les géophytes et qui expliquent les fortes croissances observées aux faibles températures chez ces espèces. Nous tentions également d'identifier les voies signalétiques qui induisent la sénescence foliaire lorsque le puits se remplit d'amidon en ayant recours à une approche métabolomique et à l'établissement du profil phytohormonal. L'espèce étudiée, l'érythrone d'Amérique (Erythronium americanum Ker-Gawl.), a été cultivée suivant trois régimes de températures: 8/6 °C, 12/8 °C et 18/14 °C (jour/nuit). Les taux respiratoires des plantes ont été mesurés à la température de croissance et à une température commune afin de tester notre hypothèse selon laquelle la respiration s'acclimate à la température de croissance tant au niveau de la feuille que du bulbe, principalement par la voie alternative, comme moyen de réduire le déséquilibre source−puits. Les différents glucides non structuraux (NSC) et structuraux (SC) du bulbe ont été déterminés qualitativement et quantitativement, ce qui nous a permis de vérifier si les plantes pouvaient ajuster leur répartition du carbone dans différents composés (NSC vs SC) une fois que les cellules sont remplies d'amidon. Nous avons également caractérisé les phytohormones et métabolites et surtout ceux qui sont étroitement associés au stade phénologique précédant la sénescence foliaire afin d'identifier les voies signalétiques qui établissent le lien entre la diminution de la force du puits et l'induction de la sénescence foliaire. L'homéostasie des taux de respiration au niveau de la feuille, combinée à un faible taux d'assimilation chez les plantes cultivées à basse température suggère que ces plantes sont capables de réduire la quantité de carbone disponible pour la translocation vers le bulbe afin de maintenir un meilleur équilibre entre l'activité de la source et celle du puits, et ce pour une durée plus longue. La respiration du bulbe est stimulée au fur et à mesure que la limitation du puits se développe, répondant ainsi fort probablement à un déséquilibre source–puits. Les plantes cultivées à la température plus élevée semblent investir davantage de carbone vers les composants de la paroi cellulaire par rapport à celles cultivées à la température plus basse une fois que les cellules sont remplies d'amidon. Cet ajustement de la répartition du carbone entre NSC et SC pourrait permettre à ces plantes de maintenir leur force du puits du moins pendant quelques jours de plus. Certains métabolites et phytohormones semblent être des déclencheurs de la sénescence foliaire, mais plusieurs sont spécifiques à l'un ou l'autre des organes ou spécifiques à un régime de température. Un accroissement des niveaux de cytokinines lorsque la feuille devient mature et leur maintien à des valeurs élevées jusqu'au début de la sénescence foliaire pourrait contrebalancer l'abondance accrue des sucres solubles au moins pendant un certain temps et éviter ainsi d'induire une sénescence précoce. Nous avons également identifié cinq métabolites qui pourraient servir en tant que facteurs signalétiques généraux pouvant induire la sénescence foliaire, à savoir le 2-O-glycérol-β-D-galactopyranoside, le mannose, le fructose, le sorbose et le maltose. Cette étude nous a aidés à mieux caractériser les voies signalétiques qui associent la diminution de la force du puits et l'induction de la sénescence foliaire et à comprendre l'acclimatation de cette espèce à la température. Nous pouvons finalement conclure que cette géophyte printanière, dont la croissance est limitée par le puits, semble capable de moduler sa force de puits de manière différentielle sous différentes températures de croissance afin d'éviter la sénescence foliaire encore plus précoce dans les situations de déséquilibre source–puits.
  • PublicationAccès libre
    Thermal acclimation of leaf respiration as a way to reduce source-sink imbalance at low temperature in Erythronium americanum, a spring ephemeral.
    (Canadian Science Publishing, 2017-11-14) Dong, Yanwen; Gérant, Dominique; Lapointe, Line
    Many spring geophytes exhibit greater growth at colder than at warmer temperatures. Previous studies have suggested that there is less disequilibrium between source and sink activity at low temperatures, which delays leaf senescence and leads to higher accumulation of biomass in the perennial organ. We hypothesized that dark respiration acclimates to temperature at both the leaf and bulb levels, mainly via the alternative respiratory pathway, as a way to reduce source–sink imbalance. Erythronium americanum Ker-Gawl. was grown under three temperature regimes: 8/6 °C, 12/8 °C, and 18/14 °C (day/night). Plant respiratory rates were measured at both growth and common temperatures to determine whether differences were due to the direct effects of temperature on respiratory rates or to acclimation. Leaf dark respiration exhibited homeostasis, which together with lower assimilation at low growth temperature, most likely reduced the quantity of C available for translocation to the bulb. No temperature acclimation was visible at the sink level. However, bulb total respiration varied through time, suggesting potential stimulation of bulb respiration as sink limitation builds up. In conclusion, acclimation of respiration at the leaf level could partly explain the better equilibrium between source and sink activity in plants grown in low-temperatures, whereas bulb respiration responds to source–sink imbalance.