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Je tiens à exprimer ma gratitude et adresser mes remerciements les plus sincères à
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précieux et leur support moral.

Enfin, je remercie tous ceux qui ont contribué, de prés et de loin, à la réalisation de
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Résumé

Ce travail présente une nouvelle technique de compilation dynamique sélective pour

les systèmes embarqués avec processeurs ARM. Ce compilateur a été intégré dans la

plateforme J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Con-

figuration). L’objectif principal de notre travail est d’obtenir une machine virtuelle

accélérée, légère et compacte prête pour l’exécution sur les systèmes embarqués. Cela

est atteint par l’implémentation d’un compilateur dynamique sélectif pour l’architecture

ARM dans la Kilo machine virtuelle de Sun (KVM). Ce compilateur est appelé Armed

E-Bunny. Premièrement, on présente la plateforme Java, le Java 2 Micro Edition(J2ME)

pour les systèmes embarqués et les composants de la machine virtuelle Java. Ensuite,

on discute les différentes techniques d’accélération pour la machine virtuelle Java et on

détaille le principe de la compilation dynamique. Enfin, on illustre l’architecture, le

design (la conception), l’implémentation et les résultats expérimentaux de notre compi-

lateur dynamique sélective Armed E-Bunny. La version modifiée de KVM a été portée

sur un ordinateur de poche (PDA) et a été testée en utilisant un benchmark standard

de J2ME. Les résultats expérimentaux de la performance montrent une accélération de

360 % par rapport à la dernière version de la KVM de Sun avec un espace mémoire

additionnel qui n’excède pas 119 kilobytes.

Abstract

This work presents a new selective dynamic compilation technique targeting ARM

16/32-bit embedded system processors. This compiler is built inside the J2ME/CLDC

(Java 2 Micro Edition for Connected Limited Device Configuration) platform. The pri-

mary objective of our work is to come up with an efficient, lightweight and low-footprint

accelerated Java virtual machine ready to be executed on embedded machines. This is

achieved by implementing a selective ARM dynamic compiler called Armed E-Bunny

into Sun’s Kilobyte Virtual Machine (KVM). We first present the Java platform, Java

2 Micro Edition (J2ME) for embedded systems and Java virtual machine components.

Then, we discuss the different acceleration techniques for Java virtual machine and

we detail the principle of dynamic compilation. After that we illustrate the architec-

ture, design, implementation and experimental results of our selective dynamic compiler

Armed E-Bunny. The modified KVM is ported on a handheld PDA and is tested using

standard J2ME benchmarks. The experimental results on its performance demonstrate

that a speedup of 360% over the last version of Sun’s KVM is accomplished with a

footprint overhead that does not exceed 119 kilobytes.
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Chapter 1

Introduction

1.1 Motivations

The use of wireless systems such as PDAs, cell phones, pagers, etc. becomes a need in

our everyday life. In this context, the platform Java, and in particular J2ME/CLDC

(Java 2 Micro Edition for Connected Limited Devices Configuration) is now recognized

as the standard execution environment for these types of wireless devices due to its

security, portability, mobility and network features. The deployment of Java enabled

wireless devices reached nearly 15 million units in 2001 and will likely exceed 100 million

in 2002. This trend is expected to continue at a nearly exponential pace in the next

few years. The scope of the underlying platforms covered by Java goes from powerful

systems such as servers, desktop, etc. to resources-limited devices such that PDAs, cell

phones, pagers and house appliances. In order to cope with the different requirements of

this large range of platforms, Sun Microsystems offers three adequate platforms: J2EE

(Java 2 Enterprise Edition) for servers, J2SE (Java 2 Standard Edition) for desktop

workstations and J2ME for embedded devices.

In this work we are concerned with the platform J2ME used in embedded systems,

which are called also resources-limited systems due to their limitations in terms of

memory and power. The Java virtual machine built inside J2ME is called KVM (Kilo

Virtual Machine). It is traditionally interpreter-based and designed especially to deal

with the special characteristics and limitations of embedded devices. The interpreter

of KVM emulates the execution of Java bytecodes on a specific platform. While the

main advantages of the interpretation mechanism are the simplicity and portability,

its severe drawback remains definitely its poor performance. Although the problem of

performance is applicable on all the Java platforms (i.e. J2EE, J2SE and J2ME), the
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lack of memory available in embedded systems adds more difficulties to find acceleration

solutions for J2ME or to apply already existing ones in other Java platforms.

At the same time, the ARM architecture is becoming the industry’s leading 16/32

bit embedded system processor solution due to its performance and RISC (Reduced

Instruction Set Computer) features. ARM powered microprocessors are being routinely

designed into a wider range of products than any other 32-bit processor. This wide

applicability is made possible by the ARM architecture, resulting in optimal system

solutions at the crossroads of high performance, small memory size and low power

consumption. All these factors make the combinations of the ARM architecture and

the J2ME/CLDC an interesting domain for research in terms of acceleration. Many

people have been interesting to enhance the performance of the Java virtual machine

and lot of techniques have been proposed. These techniques are divided into two main

approaches: hardware and software acceleration.

Regarding hardware acceleration, a significant speedup in term of virtual machine

performance is achieved. However, the high power consumption and the cost of these

acceleration technologies encourage researchers to deviate to software acceleration of

embedded Java virtual machine. This energy issue is really damaging especially in the

case of low end mobile devices. As examples of these hardware acceleration techniques,

many companies such as Zucotto Wireless, Nazomi, etc. have proposed Java processors

that execute in silicon Java bytecodes. For software acceleration, general optimiza-

tions, ahead-of-time (AOT) optimizations, just-in-time (JIT) compilation and selective

dynamic compilation are in general the four categories of software acceleration tech-

niques. General and ahead-of-time optimization can lead to reasonable acceleration,

however these techniques are not competent to JIT and selective dynamic compilation

which can reach a speedup that exceeds 200%.

JIT techniques can dramatically increase the execution speed of Java programs, how-

ever, they are inappropriate in the context of embedded systems owing to their large

code size. The compilation process also implements sophisticated flow analysis and reg-

ister allocation algorithm to generate optimized and high quality code. Even though,

almost all standard Java virtual machine such as HotSpot VM [35], IBM Jalapeño [2],

IBM JDK [33], Intel ORP [2], IBM Mixed-Mode-Compiler [34], Latte [43], OpenJIT

[24] and Kaffe [41] are endowed with such dynamic compilers. Researches proved that

the JIT is more practical for desktop Java virtual machine and the selective dynamic

compilation is the best optimization technique for the embedded Java virtual machine

built inside resources-limited systems. Selective dynamic compilation optimizes pro-

grams at runtime, based on information available only at runtime, thus offering the

potential for greater performance and less memory use. It deviates from JIT compi-
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lation by selecting and compiling only those java code fragments that are frequently

executed. This technique can significantly accelerates the virtual machine and at the

same time reduces the memory overhead.

This work mainly describes the design and the implementation of Armed E-Bunny, a

lightweight selective dynamic compiler targeting ARM processors. Based on a selection

technique, Armed E-Bunny overcomes all the drawbacks stated above about integrating

such compilers inside an embedded Virtual Machine and comes up with a speedup of

360% over the last version of Sun’s KVM with a footprint overhead that does not exceed

119KB.

1.2 Objectives

The following are the main objectives of this work:

• Show the role of Java platform and ARM architecture in the advent of embedded

technology.

• Present the actual acceleration techniques for Java platforms and in particular

for J2ME/CLDC.

• Study the problem found in some virtual machines endowed by dynamic compilers.

• Demonstrate that the selective dynamic compilation is the best solution for em-

bedded Java virtual machine.

• Design and implement a selective dynamic compiler into the KVM.

• Port and execute our system on embedded devices.

• Accomplish an efficient speedup over Sun’s virtual machine with the minimum

footprint overhead.

1.3 Contributions

The following are the contributions of this work:
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• Our dynamic compiler is very efficient in terms of performance while the memory

footprint overhead does not exceed 119KB. Results tested on an Embedded-Linux

Handheld demonstrate that the modified virtual machine is 3.6 time faster than

the last version of Sun’s Java virtual machine.

• Our system is the first academic work that targets CLDC-based embedded Java

virtual machine by dynamic compilation and one of few commercial systems that

target ARM microprocessors.

• Our solution covers also the different issues of integrating a dynamic compiler into

a Java virtual machine such as exception handling, garbage collection, threads,

switching mechanism between the compiler and the interpreter, etc.

1.4 Document Structure

This document is composed of five chapters. Java platform, Java 2 Micro Edition

(J2ME) for embedded systems and the different Java virtual machine components are

described in Chapter 2. Chapter 3 discusses the different acceleration techniques for

Java virtual machine and details the principle of dynamic compilation. Chapter 4

highlights the architecture of ARM platform as well as the architecture, design and

implementation of our selective dynamic compiler Armed E-Bunny. All the detailed

information of our system, the difficulties we faced and the experimental results are

also stated in this chapter. Finally, the conclusion and the future work are presented

in Chapter 5.
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Java platform

2.1 Introduction

The Java technology allows the development of efficient and secure cross-platform soft-

ware and the Java virtual machine (JVM) is the cornerstone of this technology. The

JVM relies on an interpretation mechanism which emulates the execution of Java byte-

codes on a specific platform. Although this technique provides portability and platform

independency, its main severe drawback remains definitely its poor performance. In this

chapter, we discuss first the main components of the Java virtual machine. Then we

focus on the embedded Java platform and we describe its architecture, specifications

and limitations. Finally, we present the Kilo Java virtual machine and the conclusion.

2.2 Java Platforms

The scope of platforms covered by Java goes from powerful systems such as servers and

desktop to resources-limited devices such as PDAs, cell phones, pagers, etc. In order to

fulfill the requirements of all these machines, Sun microsystems offers three adequate

platforms: J2EE (Java 2 Enterprise Edition) for servers [30], J2SE (Java 2 Standard

Edition) for desktop workstations [40] and J2ME (Java 2 Micro Edition) for embedded

devices [36]. The JVM is the main component of a Java platform [21]. Some JVM

specifications differ with respect to the platform built inside, even though, all of them

are based on an interpreter which translates the Java bytecodes into specific machine

code. For reason of portability, a Java program is first compiled to machine-independent
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codes called bytecodes. The bytecodes generated are then interpreted by the virtual

machine to machine-dependent code to be executed on a specific processor.

2.2.1 Java Compilation

Java is a platform independent high level programming language. Although Java is kept

very close in terms of syntax and structure to other programming language such as C

and C++ , the compilation process is performed differently. Compiling a Java source

code provides a list of intermediary form code called bytecodes, which are translated by

the Java virtual machine to a specific platform machine code. The generated bytecodes

are stack-based and machine-independent. They are stored in a .class file that has a

special format defining the way of storing Java classes in a platform independent form.

Additional information regarding the class access flags, constant pool, list of fields, list

of methods, usage of stack and local variables are also stored in the .class file. Indeed,

this process ensures the portability of Java and permits a Java .class file to be run on

any machine that has a Java virtual machine built inside.

2.2.2 Java Bytecodes

Java Bytecodes are code generated by a Java compiler and are defined in the Java

virtual machine as stack-based instructions [4]. It is a low level language in which

several categories of instructions can be distinguished. When a method is invoked,

the set of bytecodes that represents it in the .class file is interpreted by the virtual

machine and then the resulting machine code is executed by the corresponding ma-

chine processors. Each bytecode is composed of one byte opcode and zero or more

operands. The operands represent a bytecode’s parameters and give additional in-

formation needed for execution. Specifically, Java bytecode provides instructions for

performing a different kind of register and stack operations. This includes pushing and

popping values onto/from the stack, manipulating the register content and performing

logical and arithmetic operations. As for transfer control instructions, Java bytecodes

support both conditional and unconditional jump. There are also some high level byte-

codes that are Java specific and that allow for array/object field access, object creation,

method invocation as well as type casting and function return. JVM distinguishes 200

standards, 25 quick and 3 reserved bytecodes. The quick ones are quick versions of

some standard ones and are created only at runtime to take advantage of previous work

done and enhance the execution performance. The reserved ones are special purpose

bytecodes and are used only internally by the JVM. The fast invoke, get/set fields and
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new are examples of those bytecodes that have quick versions.

2.2.3 Java Execution

The Java virtual machine is the software responsible of executing a Java program on a

machine. The implementation of the virtual machine differs with respect to the target

machine processors and specifications. In this context, there are four ways through

which a Java program is executed: an interpreter, a static compiler, a dynamic compiler

and a Java processor. After compiling a Java program by a Java compiler, a command

line typed by the user loads the resulting .class file together with the system classes

and superclasses in the Java virtual machine for execution. Once the loading and

initialization mechanisms are completed, a verification process is applied in order to

check the structure and the well-typing of the loaded classes. After that, one of the

ways mentioned above is performed in order to interpret or compile the bytecodes

representing each method saved in the .class file and emulates their execution on a

specific platform. Indeed, some functions in the virtual machine are responsible of

gathering the references and parameters of each method, saving and restoring contexts

and preparing the stack for execution.

When a Java method is called, a frame is created. Each method frame contains

references to:

• The frame pointer (FP).

• The local variables (Locals Pointer: LP) of the called method.

• The runtime constant pool (CP) of the called method.

• The top of the stack of the called method (Stack Pointer: SP).

• The instruction’s pointer following the method’s call instruction (Instruction pointer:

IP).

• The top of the stack of the calling method.

• The frame pointer of the calling method.

Once a return from the called method is performed, the frame of the called method

is destructed and the execution continues at the instruction where IP points. The FP

and SP will be set to the values of the calling method’s FP and SP which are saved in

the context of the called method as previous FP and SP.
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Figure 2.1: JVM Architecture

2.3 Java Virtual Machine

With the advent of Internet and mobile technology, Java gained more popularity due

to its portability. Moreover, Java is object oriented programming language, supports

multi-threading, includes garbage collector and offers high level security. All these

features are provided mainly by its virtual machine. The Java virtual machine (JVM) is

a runtime environment consisting of several components that provide Java with platform

independency, security and mobility. JVM is an an abstract computer that can load

and execute Java programs. In this section we detailed the role and features of the

main JVM components responsible of Java bytecodes execution. Figure 2.1 shows

these components.

2.3.1 Class Loader

Class loaders are special Java runtime objects. They are used to achieve the loading of

classes into the JVM. We distinguish mainly the following:

• System or primordial class loader: This loads system classes from the CLASS-
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PATH location.

• Applet class loader: This loads the applet and all the referenced classes.

• RMI class loader: This loads classes for the purpose of remote method invocation.

• User-defined class loader (not trusted): This is a customized class loading that is

application dependent.

Class loader security is paramount for the defense against malicious code. It is

meant to protect Java classes, and in particular the standard Java library from spoofing

attacks. This is done by a delegation of the loading requests to the primordial loader.

A class loader defines a distinct namespace for the classes it loads. Therefore multiple

code units could be loaded from different sources without a risk of class name collision,

and hence could not interfere. This aims basically at ensuring mutual protection among

these mobile code units.

2.3.2 Bytecode Verifier

The bytecode verifier can be considered as the low level security layer in the JVM

security architecture. The objective of the verifier is to guarantee the basic safety

properties. These include stack/registers safety, type safety, object safety and control

flow safety. The bytecode verifier achieves the verification process after the loading of a

class. This process includes a verification of the syntax and semantics of the .class file.

The bytecode verifier inspects the bytecodes of the methods to check their validity. It

also achieves a data flow analysis to check the type safety property.

2.3.3 JVM Runtime Heap and Structures

Every Java virtual machine must implement some structures and use particular memory

space in order to execute a Java program. The constant pool, the method area, the

JVM stacks and the method frames are the JVM runtime structures implemented in the

Java virtual machine. The heap is the name of the memory space reserved for saving

these structures and other virtual machine running purposes.
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Heap

The heap is a memory space in which all the JVM runtime structures and allocated

objects are saved during a Java program execution. The heap is divided into two sectors:

permanent space and garbage collected space. The permanent space is not scanned by

the JVM garbage collector and then it cannot be freed once it is full. The permanent

space is used to store some structures such as Method area. On the other hand, the

garbage collected space is used to allocate JVM stacks and objects. When this space is

full, the garbage collector passes through it and frees all the unreferenced objects.

Constant Pool

During the Java code execution, different Java runtime structures are maintained. Func-

tion names, constant valued, class descriptions and method descriptions are instances of

such structures. All these data are maintained by JVM in a special area called Constant

Pool. These data are used by almost every Java runtime component.

Method Area

This area contains all the bytecodes of the methods. During execution, the program

counter always points to the next bytecode in the method area to be executed. The

program counter is usually saved into a reserved machine register.

JVM Stacks

The execution of a Java program by the Java virtual machine is stack-based. All

the data operations and local variables are carried out through a stack created in the

heap and called JVM stack. Since mutltithreading execution is supported, the virtual

machine uses a different stack for each thread.

Method frames

A method frame is a part of a thread JVM stack created for each method at the

moment of its invocation. Each method frame contains the method local variables,
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method arguments, calling method context registers and free spaces reserved for the

method bytecodes execution. At any given moment, only one frame is active and there

are some machine registers specified to point to the corresponding active frame. These

machine registers differ from platform to another and are updated each time another

method is called or a return to the calling method is performed.

2.3.4 Interpreter

The interpreter is the Java virtual machine component responsible of translating a Java

program bytecodes to executable machine code. It offers a high degree of hardware ab-

straction and provides portability for the JVM. It can be recompiled very easily for

any architecture with almost no changes. In fact, the interpretation is a very popular

technique used in programming language implementation. Its is very simple, easy to

implement, does not require large memory space and provides high portability. How-

ever, the main drawback of applying such approach is the poor performance it causes

to the JVM at runtime. The interpreter is 5 to 20 times slower than the native code

execution. In this context, many approaches have been proposed in order to enhance

its performance. Fast-Interpreter is one of these approaches. Such approaches trans-

late the bytecodes to threaded code and then interpret it using a generated interpreter

particularly designed for threaded code. However, results shows that optimizing only

the interpreter does not lead to high execution speedup, from which was the need to

propose other techniques. Some of these techniques replace the interpreter, others run

in parallel with it. Dynamic compilation is an instance of these techniques. A dynamic

compiler can decrease the running time of a Java virtual machine by a factor of 20.

The interpreter is a software emulation of the processor. It is in general implemented

by a main loop that iterates on the called method bytecodes and performs their functions

in order. Inside the loop, a switch case is able to dispatch the sequence of bytecodes and

differentiate among their execution. Each case value implements one Java bytecode.

For each called method, a frame is created and is used as a space of execution. This

frame contains all information and date needed to execute a method properly.

2.3.5 Security Manager

The security manager represents the last level in JVM security architecture. The role

of the security manager is to guard the application security policies. It ensures the

high-level security properties such that some specific files should never be erased or an
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internet connection towards some hosts should never be established. The Java API

queries, via the Java virtual machine, the security manager before performing any

potential security sensitive action. The security manager implements the appropriate

check methods that enforce the security policy. The security manager is then able to

stop a non-permitted operation by throwing a security exception.

2.3.6 Garbage Collector

A key feature of Java is its garbage collection mechanism, which takes care of freeing

dynamically allocated memory that is no longer referenced. The JVM heap stores all the

objects created at runtime during a Java program execution. Whenever an allocation is

needed and no more heap space is available, the garbage collector is called. Furthermore,

a garbage collector may also combat heap fragmentation. Some free blocks of heap are

left in between blocks occupied by live objects. Request to allocate new objects may

have to be filled by extending the size and changing the fragmentation of the heap.

This is performed whenever there is no contiguous free heap space that fits with the

size of the new object.

Because the heap is garbage collected, Java programmers don’t have to explicitly

free allocated memory. Moreover, knowing when to explicitly free allocated heap can

be very tricky, hence, giving this job to the JVM has several advantages. First, pro-

grammers do not have to spend time on chasing elusive memory problems. This helps

them to be more productive when programming in Java than any other programming

language. Second, garbage collection ensures a program integrity. It is an important

part of Java security that prevents the JVM crashes caused by improper memory free-

ing. However, a remarkable disadvantage of a garbage collected heap is is the overhead

time needed to scan the heap, free unreferenced objects and even change fragmentation.

This affects the performance of the Java virtual machine at runtime. Fortunately, a

panoply of garbage collection algorithms have been developed in order to deal with

this drawback. Although many different techniques have been applied on different Java

platforms virtual machines, all of them must do two basic things. First, they have to

detect no longer referenced objects. Second, they have to eliminate the unused objects

in the heap and make it available for eventual storage. Fragmentation change may also

be applied in some cases. In this section, we distinguish first the reference counting

and tracing collectors which are two approaches used to select objects to be eliminated

by the garbage. Then, we describe the compacting and copying collectors, which are

responsible of freeing unreferenced objects and combatting heap fragmentation [16, 42].
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Reference Counting Collector

Reference counting collector is an old garbage collection strategy which distinguishes

live objects from garbage ones, by checking the value of the counter of each object in

the heap. Each object has a reference count that is set to one at the object creation

moment. This counter is incremented by one each time the object reference is used

during a program execution. On the other hand, this counter is decremented by one

when the object reference goes out of scope or is assigned a new value. The garbage

collector selects and eliminates the objects with counter values equal to zero. The main

advantage of this strategy is the small chunks of time required to trigger the garbage

collector. It is relevant for programs that cannot be interrupted for long time. However,

this type of collectors does not decrement the counter’s values of the objects that refer

to one another, which means some object counters will never reach zero even if they

are no longer reached by the program.

Tracing Collector

Tracing collector is the garbage collection algorithm mostly used by the Java virtual

machines. It is known also as mark and sweep algorithm. During the first phase of this

type of garbage collection process, the garbage collector scans the graph of object refer-

ences and marks all the objects encountered by setting some flags in a particular data

structure. The second phase, which is called sweep, consists of removing the unmarked

objects and freeing heap spaces. In the Java virtual machine implementations, the

sweep phase includes also other steps to combat heap fragmentation in case no more

heap space is available to free. Compacting and copying collectors are two different

strategies used to perform this work.

Compacting and Copying Collectors

Once the garbage collection is called and no more free heap space is available to free

for the new allocation, the garbage collector combats heap fragmentation in order to

find relevant heap space that fits with the size of the new allocated object. In this

context, there are two techniques used in order to move objects on the fly to reduce

heap fragmentation. The fist one is called compacting collector, while the second one

is called copying collector.

The Compacting collector eliminates unused free spaces between allocated objects by
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pushing all referenced objects over one side of the heap. This process fills an entire side

of the heap with non-garbage references, while the other side becomes empty and ready

for new allocation. All the object references are updated by the new heap locations.

The main disadvantage of compacting collector is the overhead time needed to change

the heap fragmentation.

The Copying collector divides the heap into two space area. Only one space area is

used at once, and a switch between the two area is applied when the current used one is

full. Moving all live objects to the other area eliminates also the empty unused spaces

between allocated objects, which means there is no need to combat heap fragmentation.

At the switch moment, the program execution is stopped until the copy process is ac-

complished. A common copying collector is called Stop and Copy. The main drawback

of this strategy is the double heap size required during execution because only one half

of the heap is available at once for allocation and storage.

2.3.7 Exception Handling

The Java programming language provides the exception handling mechanism to help

programs report and handle errors. This mechanism is very convenient for developers

to detect the errors that occur when the Java semantics are violated. When an error

occurs at runtime, the program or the virtual machine throws an exception. If this

particular type of errors is handled, the exception is catched by a block of code called

exception handler found in the program. An exception handler can handle one or many

types of errors. Once an exception is handled, the program continues its execution at

the first catch that fills this condition. Otherwise, an interrupt occurs and the program

exists abnormally.

The statement used for throwing and handling the exception is a try/catch/finally,

try/catch or try/finally. Table 2.1 shows an example of this process. The try statement

identifies a block of statements within which an exception might be thrown. The catch

statement must be associated with a try statement and identifies a block of statements

that can handle a particular type of exception. The statements are executed if an

exception of a particular type occurs within the try block. The finally statement must

be associated with a try statement and identifies a block of statements that are executed

regardless of whether or not an error occurs within the try block.
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try

{
statement (s)

}

catch (exceptiontype name)

{
statement (s)

}

finally

{
statement (s)

}

Table 2.1: Exception Handling

2.3.8 Threads

One of the feature of the Java language is the multithreading support. Java allows

programmers to create many threads as part of an application or applet. All threads

within a Java program can execute within a shared memory, can share access to ob-

jects and can send notifications to each other. Multithreading is an essential part of

the Java virtual machine specification. It is handled at software level. This support

enhances program portability and also provides for a significant increase in programmer

productivity over a linked library approach.

Java virtual machine can have several threads of execution at the same time. Each

thread has a structure representing its state and a stack for its execution. At start-up,

the main thread is first created, then additional threads can be spawn as desired. An

interesting aspect of Java multithreading is the technique performed to schedule threads

switching and control the access to the shared objects. This technique applied consists

of two processes called threads switching and threads synchronization.

The Java virtual machine schedules between threads to access the machine processor.

Each thread is assigned a time-slice counter which specifies its time to execute its code.

The technique used is priority based. The thread with high priority has advantage over

the other ones to run and the new created thread is assigned the same priority as its

creator. Whenever a thread time-slice counter reaches zero, the Java virtual machine

switches automatically to another thread with lower priority. In case there are many

threads with the same priority, the FIFO ordering technique is applied. The switch

mechanism requires saving the context of the current method in the thread structure

(i.e fp, ip and sp values) and loading another method context of the thread to which
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the execution switches. This context saving permits a thread to eventually continue its

execution from the same point it stopped before the switch.

Furthermore, shared objects cannot be accessed by two or more threads at the same

time. For this purpose, the Java virtual machine provides a lock for each object in order

to synchronize between threads, so each thread has to lock the object before accessing

it or executing any of its methods, and other threads are prevented from having access

to the same object until the lock owner releases it. The threads who need to access a

locked object are put in the waiting list of the object lock. It is a queue list used to keep

order in accessing the corresponding object. Sometimes a notification is performed by

the virtual machine to awake blocked objects.

2.4 Java for Embedded Systems

With the advent of Internet, connected intelligent information appliances such as cell

phones, pagers, personal organizers, PDAs, etc. are becoming more popular and im-

portant in our everyday lives. The number of these embedded devices are increasing

rapidly. In this context, the Java language is a good choice for many embedded indus-

tries. For instance, according to Sun microsystems statistics, more than 400 millions

of Java phones were deployed in the market in 2003 and more than 600 millions are

expected during 2004 [39].

In fact, an important improvement in embedded technology has been accomplished.

They are now more connected to the Internet by either wire or wireless connection. Em-

bedded devices allow now to browse and download new services and applications online

such as interactive games, banking and ticketing applications, wireless collaboration

and so on. All these features require a relevant platform for application development

available for these devices. Java has met the demand of this kind of machines and has

extended its scope with the introduction of Java 2 Micro Edition (J2ME) technology.

Java is now the main platform of a huge number of embedded devices of different types

and this number is increasing day after day. It is enabling the development of many

new and powerful information appliances products and allows users, service providers

and device manufacturers to profit of a rich collection of service applications delivered

to user devices on demand.

2.4.1 Embedded Systems

The use of embedded devices such as cell phones, pagers, screen phones, PDAs, etc.

increases day after day. The services provided by such devices become more efficient

and relevant to help people in their everyday business and private lives. Embedded
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devices have limited resources in term of memory, processor and power. These restric-

tions results in many problems for software that will run on such machines. These

software should have small size executable code which should execute operations that

do not require lot of memory, processor and power consumption. Java has deployed

the Java 2 micro edition platform which is designed specifically to be relevant for em-

bedded devices. However, the execution performance is the main drawback in this

platform. Many researches have been done in this domain to solve this problem and

many approaches have been proposed.

An embedded devices is a very small machine. Its memory is a precious resource.

Such type of devices has an available memory less than 512 kilobytes to handle the

entire Java runtime environment. The minimum requirement is 300 kilobytes of RAM

and 1 megabyte of flash and ROM. The available memory space is used to store heap

data, subroutines and stack information. So, the memory footprint of the Kilo virtual

machine (KVM) of J2ME should have the minimum size possible. Regarding the battery

life, the design of the virtual machine should preserve the maximum power in order to

extend the mobility duration. An important enhancement has been accomplished in

this context in order to enlarge the memory space and battery life, however, the small

size of these machines and their connectionless feature are still the main problems for

developers.

2.4.2 Java 2 Micro Edition

To fulfil the need of all the products market, and depending on the resources available

and services needed, Sun has grouped its Java technology into three platforms categories

as follows:

• J2EE used for servers and services providers workstations.

• J2SE used for destop computers.

• J2ME used for embedded devices.

Figure 2.2 illustrates the different Java platforms together with the machines using

them. In fact, Sun has recognized that the first two edition J2EE and J2SE cannot

be deployed into embedded devices due to the resources they require to be run. For

this reason, J2ME is particularly addressed to take into account the embedded systems

characteristics and has reached, since its deployment in 2002, a good success in the

market of restricted resources devices. J2ME does not need high resources machines

to be executed. In this context, some other features of other Java platforms, such as

the floating point, the Java native interface (JNI) and the security manager of the Java
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Figure 2.2: Java Platforms

virtual machine, do not exist in the J2ME edition. However, J2ME is still so powerful

in terms of high level object oriented programming language, portability and security

and has maintained its compatibility with the other Java platforms J2SE and J2EE.

J2ME is presently the execution environment platform of many types of devices.

These devices are divided into two categories of products as follows:

• J2ME/CDC: This category of products include TV set-top boxes, Internet TVs,

Internet-enabled screen phones, high-end communicators and automobile enter-

tainenment/navigation systems. CDC means Connected Device Configuration.

These devices have more resources than the small embedded devices. These re-

sources consist of large user interface capabilities, 2 to 16 megabytes of memory

space and high bandwidth network connection.

• J2ME/CLDC: This category of products include cell phones, pagers, personal

organizers, etc. They are known as CLDC (Connected, Limited Device Config-

uration) devices. These embedded devices have very restricted resources which

consist of simple user interface, memory size less than 512 kilobytes to handle

runtime environment and low bandwidth connection.

Indeed, all the J2ME machines are more likely converting to use wireless connection,

hence the differences between the above two categories are becoming mainly defined in
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terms of memory size, battery life durability, bandwidth consideration and physical

screen size.

The flexibility of J2ME is maintained thanks to an architecture designed to be

modular and scalable. The J2ME architecture consists of three related software layers

built upon the operating system of the target machine. The three layers that are

shown in figure 2.3 are: Java virtual machine, configuration and profiles. The first layer

above the operation system is the Java virtual machine. It is an implementation of

a Java virtual machine that targets a family of devices supporting a particular J2ME

configuration. The implementation of the virtual machine differs with respect to the

J2ME configuration. For instance, the J2ME/CDC has the classic Java virtual machine

implementation built inside, while the J2ME/CLDC has the Kilo virtual machine which

has different implementation addressed to limited resources devices. The second upper

layer is the configuration layer. Its placement is in the middle in order to relate the

virtual machine layer to the profiles layer. The configuration layer defines the set of

Java virtual machine features and the Java class libraries supported by a set of devices

having same characteristics. In J2ME, Sun distinguishes two types of configuration:

CDC and CLDC. The third layer is the profiles. It is the only layer visible to users that

provides the execution environment to run applications. The profiles layer consists of a

set of Application Programming Interfaces (APIs) built to target a particular family of

devices. Some devices can support many profiles types, while others such as embedded

devices support only one which is the MIDP (Mobile Information Device Profile).

J2ME Profiles

The J2ME profiles layer is the most visible layer to users layered on top of the config-

uration [38]. It is defined as a collection of Java APIs and class libraries specific for a
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family of devices. A profile is a Java application execution environment addressed to

a set of devices having similar features. In fact, a profile provides the portability to

the applications written and deployed by different manufacturers in order to be run on

all devices supporting this profile. To provide portability, the profile provides a com-

plete toolkit to implement application for devices supporting J2ME such as cell phones,

pagers, set-top box, washing machine, or interactive electronic toy. Furthermore, the

profile is created to support and execute a group of application addressed to several

categories of devices, even if these devices do not have the same features and resources.

For instance, a cell phone and a washing machine have totally different machine char-

acteristics and resources, even though, they can have the same profile built inside to

run some applications relevant for both of them. Presently, MIDP is the only profile

existing designed for cell phones and related devices.

J2ME Configuration

Java configuration defines a Java platform for a particular category of devices with

similar requirements, resources and hardware capabilities. It links a J2ME profile to

the relevant Java virtual machine. To be more specific, a configuration specifies the Java

programming language features supported, the Java virtual machine features supported

and the basic Java libraries and APIs supported. For instance, the devices having

restricted resources will be grouped together and will have a specific configuration,

while the others with high resources will have a different configuration. Moreover, a

profiler should be compatible with the configuration and the virtual machine at the

same time. This compatibility assures the portability feature of the J2ME platform.

Since all the features are automatically included in the profiler and each configuration

specifies the virtual machine features, so any applications implementer can assume that

an application addressed for a particular profile is also addressed to its corresponding

configuration and Java virtual machine. Hence, it can be executed on all the devices

that support this profile. For example, an application addressed to the profile of the

embedded systems (i.e MIDP) can be executed on all the embedded devices that support

the MIDP profile. Sun Microsystems has defined two standard J2ME configurations:

J2ME/CLDC and J2ME/CDC. This distinction is mainly based on the resources and

capabilities of the J2ME devices. Figure 2.4 shows the relations between CLDC, CDC

and the Classical Java platform J2SE in terms of Java classes libraries and features

supported. This relation is more detailed in the following two paragraphs.

CLDC CLDC (Connected Limited Device Configuration) is the configuration built

for embedded devices such as personal, mobile, connected information devices [39]. Such

devices have simple user interface, small memory size and low bandwidth connection.
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Figure 2.4: CDC, CLDC and J2SE

The majority of the Java classes of this configuration are either the same classes or

subclasses of the classes of the J2SE platform. Moreover, this configuration includes

also some new classes designed particularly for small-footprint devices. In fact, the

reason, why some features in J2SE are not included in J2ME/CLDC, is the limitation

of the devices supporting J2ME/CLDC. For instance, some features need large memory

space which is not available in embedded devices. To deal with that, Sun Microsystems

has omitted some features and re-implemented others that do not fit in CLCD in order to

respect the hardware capabilities of J2ME/CLDC machines. The Java virtual machine

supported in J2ME/CLDC is called the Kilo virtual machine (KVM). Many features

that exist in the classical Java virtual machine are not implemented nor supported

inside it. A detailed description of the KVM is presented later in this chapter.

The Java programming language supported in CLDC supports all the specifications

of the classical Java language except:

• The Object.finalize() which finalize a class instance.

• The float and double data types.

• Some subclasses of Java.lang.error. The absence of these subclass restricts the

error handling capabilities.

The Kilo Java virtual machine supports all the specifications and features of the

classical virtual machine except:

• The security management performed by the security manager. Indeed the security

manager component of the classical JVM does not exist in the virtual machine of

J2ME/CLDC.
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• The user defined Java level class loaders.

• The float bytecodes.

• The thread groups and daemon threads.

• The Java native interface (JNI).

• The Weak references.

• The Reflection.

CDC CDC (Connected Device Configuration) is the configuration built for devices

such as shared, fixed, connected information devices. Such devices have more resources

than the small embedded devices. These resources consist of large user interface capa-

bilities, 2 to 16 megabytes of memory space and high bandwidth network connection.

As shown in figure 2.4, CDC is considered as a superset of CLDC and a subset of

J2SE. Like CLDC, the majority of CDC classes are the same classes or subclasses of

the classes of J2SE. Furthermore, CDC includes also some specific new classes that

do not exist in J2SE nor J2ME/CLDC. These classes are designed particularly to fit

the need of devices such as TV set-top boxes, Internet TVs, Internet-enabled screen

phones, high-end communicators and automobile entertainenment/navigation systems.

The Java programming language and Java virtual machine of the classical J2SE are en-

tirely supported by J2ME/CDC. The Java virtual machine used in CDC is called CVM.

CVM supports all the specifications and features of the classical virtual machine such as

security management, Java native interface, weak references, reflection, thread groups,

daemon threads, float bytecodes, user defined Java level class loaders, etc. The only

difference distinguishing the two Java virtual machines is that the CVM has relatively

small footprint ranged between 2 and 16 megabytes.

J2ME Virtual Machine

J2ME has two types of virtual machine that can be built inside. The first one is called

CVM which has the same specification and features of the J2SE virtual machine. CVM

is relevant for devices with memory size ranged between 2 and 16 megabytes. The

second one is called KVM (kilo virtual machine). KVM is addressed to embedded

devices with restricted resources and memory size less than 512 kilobytes. KVM is

described in detail in the next section.
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2.4.3 Java Kilo Virtual Machine

The kilo virtual machine (KVM) is the Java virtual machine for J2ME/CLDC plat-

form [37, 28]. With respect to Sun documentation, the KVM supports only the CLDC

configuration and the CLDC runs only on top of the KVM. It is expected that this

situation will change and KVM may eventually support other configuration. The KVM

is compact and portable specifically designed for resource-constrained embedded de-

vices. It is relevant for the CLDC configuration and does not support all the classical

Java virtual machine features. The design goal of the KVM was to create the smallest

possible complete Java virtual machine that includes all the main aspects of the Java

programming language and can run on limited resources devices with memory avail-

ability less than 512 kilobytes. It is called Kilo virtual machine because its memory

budget is measured in kilobytes, while other Java virtual machines memory budgets are

measured in megabytes. This optimization in footprint is due to the deletion of some

of the classical Java virtual machine features. To be more specific, the following are the

main aspects of KVM :

• KVM has small size. Its static memory footprint is ranged between 40 and 80

kilobytes depending on the compilation options and the target platforms.

• KVM’s implementation is clean, well-commented, and highly portable.

• KVM is modular and customizable.

• KVM maintains the main aspects of the Java virtual machine.

Indeed, these features make the KVM the optimal solution for embedded devices

having 16/32 bit RISC/CISC microprocessors with a total memory space that does

not exceed a few hundred of kilobytes. Cellular phones, pagers, personal organizers

and small payment terminals are instances of such embedded devices. The heap space

needed for running a Java program can be less than 120 kilobytes and the size of the

memory, occupied by the class libraries that are defined by the configuration, is typically

less than 100 kilobytes. A more typical KVM implementation requires a total memory

budget in the range of 256 to 512 kilobytes, half of it reserved as heap space, 40 to 80

kilobytes reserved for the virtual machine itself and the rest reserved for configuration

and profile class libraries. The partition of volatile and non volatile memory space

changes with respect to the implementation, the device, the configuration and the

profile.
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KVM Implementation

The KVM is implemented in the C programming language and designed to be built with

any C compiler. Its source code consists of 24000 lines of C code, located in almost

60 files. The majority of the KVM source code are machine-independent, and the

remaining small parts of code that are machine-dependent are isolated in small number

of files. Furthermore, KVM defines special purpose compile-time flags and options in

order to facilitate porting the KVM to many target platforms. Data alignment, long (64

bit) integers, big and little endian, memory allocation, garbage collection, interpreter

options and optimizations, debugging and tracing options, etc. are instances of such

flags and options. Although the KVM implementation and design are based on the

classical virtual machine specifications, its performance is 30% to 80% less than the

performance of the JDK1.1 release.

At runtime, many threads can be executed by the virtual machine and only one

of them can access the processor at a given moment. Each thread has its own Java

stack and a counter that defines its time-slice of execution. In fact, the KVM schedules

the execution of threads by itself and switches between them depending on the need,

priority and processor access time of each one of them. The KVM defines also five

virtual machine registers which are IP (Instruction Pointer), SP (Stack Pointer), FP

(Frame Pointer), LP (Locals Pointer) and CP (Constant Pool Pointer). These registers

form the context of the current running thread. Switching from one thread to another

requires to save the context of the old thread and load the context of the new thread.

The saved context of a particular thread is restored whenever a switch is performed to

it. In the KVM, only one heap contains all the structures including classes, objects,

threads, stacks and internal data structures.

Furthermore, the KVM includes a garbage collection based on a simple Mark-Sweep-

Compact algorithm. When the heap is full, the garbage collector searches all the ref-

erenced objets and mark them. Once finished, all the unmarked objects are freed from

the heap. In case there is no more unreferenced objects to free and there is still no

space available for new allocation, a compact mechanism is performed in order to move

all the objects to one end of the heap and free the other end. Figure 2.5 describes

this algorithm. Moreover, KVM supports the Java-Code-Compact utility known also

as Romizer. The Romizer permit the link of all the Java classes in virtual machine in

order to save some VM startup time. In fact, this mechanism combines Java class files

and produces a C file that can be compiled and linked by the Java virtual machine.

Referencing to Sun documentation, activation the Romizer produces a speedup of 5%.
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2.5 Conclusion

While the main advantages of the Java virtual machine is its portability, its severe

drawback remains definitely its poor performance. Although the problem of perfor-

mance is applicable on all the Java platforms (i.e. J2EE, J2SE and J2ME), the lack

of memory available in embedded systems adds more difficulties to find acceleration

solutions for J2ME or to apply already existing ones for other Java platforms. In fact,

these factors make the Java virtual machine an interesting domain for research in term

of acceleration. Many people have been interested in enhancing the performance of the

Java virtual machine and lot of techniques have been proposed. An overview of these

techniques will be presented in the next chapter. In this chapter, we discussed first the

main components of the Java virtual machine. Then, we focussed on the embedded Java

platform and we described its architecture, specifications and limitations. Finally, we

presented the Kilo Java virtual machine and we showed its poor execution performance.



Chapter 3

Acceleration of Java Virtual

Machine

3.1 Introduction

The Java virtual Machine (JVM) is the cornerstone of the Java technology. While the

main advantage of JVM is the portability it provides, its severe drawback remains defi-

nitely its poor performance. Enhancing the Java virtual machine performance is a very

active research area. Different approaches were and are being considered. Moreover,

embedding a Java virtual machine into resource-constrained devices or systems poses

very challenging, but interesting problems in terms of footprint, computation and en-

ergy consumption. These three factors stand in the way of the acceleration techniques

requiring huge data structures and complex computations, and hence increasing energy

consumption. In fact, the limitation of resources of embedded devices makes many ac-

celeration techniques, which are relevant for the classical Java virtual machine (JVM),

not applicable in the context of embedded systems and then not relevant for the embed-

ded Java virtual machine. In this chapter, we present first the optimization techniques

for the Java virtual machine, and particularly we focus on the software techniques.

Then, we discuss the dynamic compilation and we show its performance efficiency over

other techniques. Finally, we detail dynamic compilation into embedded context and

we present some virtual machines endowed with dynamic compilers.
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3.2 Optimization Techniques for Java Virtual Ma-

chine

Many people were interested in the acceleration of the Java virtual machine and many

techniques have been proposed. These techniques are divided into two main approaches:

hardware and software acceleration.

Regarding hardware acceleration, a significant speedup in term of virtual machine

performance is achieved. However, the high power consumption and the cost of these

acceleration technologies encourage researchers to deviate to software acceleration of

embedded Java virtual machine. This energy issue is really damaging especially in the

case of low end mobile devices. As examples of these hardware acceleration techniques,

many companies such as Zucotto Wireless [6], Nazomi [25], etc. have proposed Java

processors that execute in silicon Java bytecodes.

General optimizations, static compilation and dynamic compilation are in general

the four categories of software acceleration techniques [2, 5, 8, 14, 15, 35, 27]. General

optimizations consist in designing and implementing more efficient virtual machine com-

ponents such as better garbage collector, fast threading system, accelerated lookups,

etc.). Static compilation consist in using extensive static analysis to optimize program

before execution. Flow analysis, annotated type analysis, abstract interpretation, etc.

are examples of static analysis. Some results demonstrate that general and static com-

pilation optimization can lead to a reasonable acceleration. However, these techniques

are not competent to other techniques such as dynamic compilation that can reach a

big speedup (more than 200%) [39]. Dynamic compilation is the technique used in most

modern desktop JVM implementation. A dynamic compiler can dramatically increase

the execution speed of Java programs. However, it is inappropriate in the context of em-

bedded systems owing to its large code size. The compilation process also implements

sophisticated flow analysis and register allocation algorithm to generate optimized and

high quality native code.

Other approaches based on dynamic compilation were also proposed in order to be

relevant for embedded Java virtual machine. These techniques optimize programs at

runtime, based on information available only at runtime, thus offering the potential

for greater performance and less memory use. Selective dynamic compilation is one of

these approaches that usually base their optimizations on run-time-computed values

of particular variables and data structures called run-time constants. This technique

deviates from other dynamic compilation techniques by selecting and compiling only

those java code fragments that are frequently executed. An example of Java code

fragment can be a method. This technique can significantly accelerate the Java virtual

machine and at the same time reduce the memory overhead.
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3.3 Hardware Optimizations

Many hardware acceleration techniques were proposed in order to accelerate Java ex-

ecution. Hardware solutions try to perform all the complex JVM functions in the

processors. In this context, dedicated Java processors, running in parallel with native

processors, are used to emulate the execution of all or some of Java bytecodes on a spe-

cific platform. This technique, used to translate the platform-independent bytecodes

into platform-dependent binaries, is very efficient in terms of performance. The result-

ing machine-dependent binary code is then transferred by the Java processors to the

host processors for execution.

Although running JVM functions in hardware leads to a significant improvement in

terms of virtual machine performance, the cost and high power consumption make it

worthless, particularly in the context of embedded systems. Moreover, some bytecodes

and complex virtual machine functions are not handled in hardware and need to be im-

plemented in software (i.e. JVM). This entails a complex interaction between hardware

and software. Many companies such as Nazomi, ARM, inSilicon, etc. are providing

a variety of hardware accelerators, most of them are available in the market. In the

sequel, we present some of these accelerators.

3.3.1 JSTAR, Nazomi

JSTAR Nazomi is a coprocessor accelerator fully compliant with all Java technology

standards and Sun virtual machine implementations [17, 25]. It is now integrated with

several leading commercial microprocessors and virtual machines. JSTAR can now run

Java technology applications with greatly improved performance and much lower power

consumption. It acts as a Java interpreter in silicon, which retrieves Java bytecodes from

memory, translates them to platform-dependent machine code, and then executes them

in conjunction with the native processor. Figure 3.1 illustrates the JSTAR enhanced

system block diagram and shows its interfaces with the system through an SRAM

interface. JSTAR handles 159 bytecodes directly in hardware and passes control back

to the JVM whenever a bytecode is not handled. The switch mechanism is based on a

call back table [25]. The main benefits of this accelerator are:

• Highest Performance.

• Quickest time to market

• Lowest Cost

• Lowest Power
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Figure 3.1: NAZOMI JSTAR

• Consumption Adaptable to any Java virtual machine: Sun Microsystems autho-

rized or independently developed

3.3.2 ARM Jazelle

ARM Jazelle technology [32] for Java acceleration gives platform developers the freedom

to run Java applications alongside established OS, middleware and application code on

a single processor. The single processor solution offers higher performance, lower system

cost and lower power than coprocessor solutions. Jazelle was developed to be the ARM

solution for executing Java in hardware.

ARM processors have historically supported two instruction sets: the ARM instruc-

tion set, in which all instructions are 32-bits long, and the Thumb instruction set, which

compresses the most-commonly used instructions into a 16-bit format. Jazelle technol-

ogy extends this concept by adding a third instruction set - Java Byte Code - to the

capability of the processor. Besides, there is an additional instruction set support for

entering Java applications, real-time interrupt handling, and debug support for mixed

Java/ARM applications. From the programmer’s point of view, the processor has a

new mode in which it behaves like a Java virtual machine. Once in Java state, the

processor fetches and decodes Java bytecodes and maintains the Java operand stack.

The processor can switch easily, under operating system control, between Java state

and ARM/Thumb state. Jazelle is completely compatible with the ARM interrupt and

exception model, hence, giving easy integration with operating systems and applica-

tions.



Chapter 3. Acceleration of Java Virtual Machine 30

Jazelle interpreter is addressed to ARM architecture, while JSTAR can work with

any CPU. This feature differentiates Jazelle from JSTAR, otherwise they resembles in

translating bytecodes into native machine code. In Jazelle, 140 bytecodes are supported

directly in hardware. Jazelle removes the interpretation loop from the JVM and replaces

it with ARM property support code called VMZ, which is not larger than the code taken

out. The main objectives of Jazelle are:

• Reducing size and enhancing performance.

• Allowing Java instructions to be restartable and permitting interruption during

execution.

• Providing natural way to deal with interrupts.

3.3.3 JVXtreme

JVXtreme works in cooperation and in parallel with the main processor, generating

better performance than in-line conversion of Java bytecodes to native processor in-

structions. JVXtreme, though, reduces instruction fetch time so most Java bytecodes

are executed in a single cycle. The Java Virtual Machine is implemented on the native

processor, but JVXtreme handles substantial portions. Figure 3.2 shows JVXtreme

architecture. This architecture provides the speed and compact code advantages of a

native Java processor while working with a native processor.

JVXtreme handles 92 bytecodes directly in hardware and, like Jazelle and JSTAR,

it leaves the other bytecodes for software execution on the host CPU. During byte-

code execution, JVXtreme passes control back to the host CPU when it encounters an

unsupported bytecode. JVXtreme handles also stack overflow and underflow automat-

ically. The JVM uses this feature during a task switch. JVXtreme currently support

the ARM7 and ARM9 processors. It has a small footprint and operates at clock speeds

up to 200 MHz.

3.3.4 Parthus MachStream

Parthus MachStream platform is a modular, hardware-based intellectual property en-

gine, that dramatically boosts the performance and significantly decreases the battery

power requirements for multiple aspects of the wireless applications environment. It

implements a hardware-based Just-In-Time compiler (JIT). The Parthus accelerator

transforms the software JIT into a silicon implementation. Parths claims that Mach-

stream can save over 95 percent of the battery power consumed by the processor.
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MachStream supports 148 bytecodes directly in hardware, while the others are ex-

ecuted by the host CPU. Moreover, MachStream contains a silicon-based JIT code for

translation and optimization called Mach I, and a hardware-based data preprocessing

engine called Mach II. In fact, MachStream is inherently processor independent.

3.3.5 Aurora DeCaf

DeCaf processor is a hardware accelerator introduced by Aurora VLSI [44]. Unlike

other hardware accelerators, DeCaf processes all the Java bytecodes and each byte-

code is executed in a single cycle. Few native bytecodes are added, to provide access

to internal registers, cache control, and non-cached memory accesses, and to support

additional memory addressing modes. DeCaf is designed to operate either as a stand-

alone processor or as a coprocessor. It has a peak rate of four instructions per cycle

and it handles approximately 90 percent of the total Java bytecodes. DeCaf processor

is connected to a host processor through a memory-mapped or a coprocessor interface.

There are two control lines, one to trigger DeCaf and one to trigger the host because

the two processors cannot run at the same time. This technique avoids a multiprocessor

environment and associated software hassles, and minimizes also many debug troubles.

3.3.6 Zucotto Xpresso

Zucotto Xpresso [6] can also run as a coprocessor or as a stand-alone processor. It

supports only 80 percent of the most commonly used bytecodes directly in hardware,

while the other 20 percent, that are not supported by Xpresso, are translated and
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executed by a JVM. In this case a switch to host processor is performed. Moreover,

Xpresso implements some customized bytecodes in order to allow direct memory access

and to improve the virtual machine performance. It includes also an efficient hardware

support for garbage collection and puts a high priority on power consumption.

3.4 Software Optimizations Techniques

Many software acceleration techniques were proposed in order to accelerate the Java

virtual machine. Some of them consist in designing and implementing more efficient

virtual machine components, others consist in using extensive static analysis to opti-

mize programs before execution. A third category of acceleration techniques consists in

adding to or replacing the interpreter of the Java virtual machine by a dynamic compiler,

that translates all or part of the Java bytecodes to platform-dependent executable ma-

chine code. This technique used to translate the platform-independent bytecodes into

platform-dependent binaries is very efficient in terms of performance. In fact, results

show that dynamic compilation is the best solution for Java virtual machine perfor-

mance and can dramatically increase the execution speed of Java programs. However,

some of these techniques are inappropriate in the context of embedded systems owing

to their large code size. In the sequel, we present in detail the three categories of the

Java virtual machine acceleration techniques [2, 5, 8, 14, 15, 35, 27].

3.4.1 General Optimization

Java portability is one of the main features of the Java language. This portability is

made possible thanks to the interpretation mechanism. Java execution is based on

a pure bytecode interpretation technique, which lies at the heart of the Java virtual

machine and emulates the bytecode execution by executing the corresponding machine

code on a particular platform. Although this technique provides high portability, it is

the major cause of the Java virtual machine poor performance. This issue constitutes

the motivation underlying many research initiatives aiming at introducing general op-

timization techniques, that accelerate the Java virtual machine and at the same time

maintain the interpretation as the only Java execution model.

General optimization techniques consist in designing and implementing more effi-

cient virtual machine components such as better interpreter, garbage collector, thread-

ing system, lookup mechanism, etc.. It is worth to mention that these techniques do

not need important additional overhead in terms of memory and energy, hence, they

may be feasible and efficient in the context of embedded systems. In the sequel, we

describe some general optimizations techniques built in the Java virtual machine.
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Romizing

Sun introduces a Romizing technique for the Kilo virtual machine in order to speed

up the class loading mechanism. The Romizer links directly the Java classes in the

virtual machine and reduces considerably the virtual machine startup. In other words,

instead of launching the virtual machine alone and then loading the .class files one by

one during runtime, the Romizer translates Java classes into C structures that contain

all the information needed at runtime. These structures are saved in a C file and stored

in the ROM. Consequently, the Java virtual machine executes the binary code of the

pre-compiled classes from the ROM. As a result, the interpretation overhead is reduced,

loading time for romized .class files is saved, RAM memory space is saved, however the

executable file size is increased.

Fast-bytecodes implementation

The Java virtual machine implements quick versions of some bytecodes that need to

call some virtual machine runtime services during interpretation. Reference resolution

and method lookup are instances of such services. The aim of this optimization is to

accelerate the interpretation process. The technique used saves the time needed to call

the virtual machine services another time if the same bytecode with same arguments

is encountered. When one of these bytecodes is called for the first time, the runtime

services are called normally and the bytecode is replaced by a corresponding fast version.

After that a cache entry containing the computed values is created and saved. Once

the bytecode is called another time, its fast version is considered and the already saved

values are used. This technique avoids to call the virtual machine services many times

by extracting the already computed values from the cache.

Direct Threading Interpretation

This technique enhances the interpretation mechanism by eliminating the central dis-

patch [12]. Each bytecode of a method being interpreted is replaced by an address of

the corresponding implementation which ends with the required dispatch to the next

bytecode. Table 3.1 shows an instance code of this technique. For instance, the byte-

code ”ICONST 1” is replaced by its corresponding implementation address saved in

the stack (ICONST 1 : *SP++) followed by a jump instruction to the implementation

address of the next bytecode (next()), which is in this case ”ICONST 2”.
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void *ByteCode[]={&&ICONST 1, &&ICONST 2, &&IADD, ...}
int JavaStack[STACKSIZE];

#define next() goto **(IP++) // Dispatch instruction

void **IP=ByteCode;

ICONST 1 : *SP++;

next();

ICONST 2 : *SP++;

next();

IADD : - -SP;

SP[-1] += *SP;

next();

Table 3.1: Direct Threading Interpretation Code

Inline Threading Interpretation

The inline threading interpretation technique is based on the direct threading technique

and improves it by eliminating the dispatch overhead within basic blocks [26, 13, 14].

It proceeds as follows: The bytecode sequences that form the basic blocks are first

identified. Then, an implementation is dynamically created for such sequences through

copying and concatenating each bytecode implementation in a new buffer. Finally, the

dispatch code is copied at the end. Table 3.2 shows this interpretation technique for

the sequence of ICONST 1 and INEG bytecodes.

Dynamic Method Lookup Acceleration

When an invocation occurs, a Java virtual machine mechanism called ”lookup” de-

termines the method to be executed. A search for the method is performed starting

from one class and continuing recursively in the super-classes. Once the corresponding

method is found, it will be executed directly, otherwise an error is signaled. This oper-

ation is very expensive in terms of execution and it occurs very often. Many techniques

have been proposed to enhance this mechanism by saving previous lookup results in

the cache for future uses. These techniques avoid calling the lookup many times to de-

termine a particular method. Global cache, small inline cache and polymorphic inline

cache are three known techniques that are based on this strategy of acceleration[9]:

• Global cache technique stores the previous lookup results in a global cache table

consisting of three columns: The receiver class, the method name and the method

address. Once the current class and the method name matches those that are

saved in the cache, the code at the method address is executed and a call to the
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ICONST 1 BEGIN : *SP++ = 1;

ICONST 1 END : **(IP++);

INEG BEGIN : SP[-1] = -SP[-1];

INEG END : **(IP++);

DISPATCH BEGIN : goto **(IP++);

DISPATCH END;

a. Bytecode Implementation.

int ICONST 1 LENGTH = (&&ICONST 1 END - &&ICONST 1 BEGIN);

int INEG LENGTH = (&&INEG END - &&INEG BEGIN);

int DISPATCH LENGTH = ( &&DISPATCH END - &&DISPATCH BEGIN);

void *Buffer = malloc (ICONST1 SIZE + INEG SIZE + DISPATCH SIZE);

void *Current = Buffer;

memcpy (Current, &&ICONST 1 BEGIN, ICONST 1 LENGTH);

Current += ICONST 1 LENGTH;

memcpy (Current, &&INEG BEGIN, INEG LENGTH);

Current += INEG LENGTH;

memcpy (Current, &&DISTPATCH BEGIN, DISPATCH LENGTH);

b. Inlining Bytecode Implementation.

ICONST 1 body : *SP++ = 1;

INEG body : SP[-1] = -SP[-1];

DISPATCH body : goto **(pc++);

Table 3.2: Inline Threading Interpretation Code
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lookup subroutine is avoided.

• The inline cache technique saves the previous lookup results in the code itself at

each call site. The call instruction is changed to direct invocation of the method

found by the default method lookup.

• Polymorphic inline cache extends the inline cache by using a stub routine that

initially calls the method lookup. Each time the lookup is called, this stub function

is extended with information that helps to determine the method to be executed.

Thread Synchronization Optimization

The thread synchronization mechanism is provided by Java through monitors that give

exclusive access to shared data [3]. An object is an instance of such shared data.

Objects are locked and unlocked by threads during execution using a lock structure.

This structure, which is stored in the object header, contains some information about

object lock states. So, added per-object states and two or three words of object header

spaces have to be added in order to support the synchronization mechanism. Indeed,

performing this mechanism affects particularly the embedded virtual machine because

of the limited storage spaces . Some techniques are proposed to compact the size of the

object header from three words to one word . Compacting the memory used by objects

results in faster and more efficient threads synchronization mechanism.

Acceleration of the Verification

The verification process of the classical Java virtual machine is not relevant for embed-

ded devices due to their limited resources. The verification process requires a lot of

memory in order to perform its data flow analysis. To deal with this problem, Sun has

divided the verification process into two steps: Pre-verification and verification. The

pre-verification step, which is done off-line (before execution), performs all the data

flow analysis and stores all the resulting information in the pre-verified .class file. The

second step is the verification, during which a verification of the information stored in

the pre-verified .class file is performed. This technique is very efficient and saves the

time needed to perform the data flow analysis at runtime.

3.4.2 Static Compilation

All the Java virtual machine acceleration techniques that are performed before execution

are part of the static compilation category. Ahead of Time (AOT) and Way Ahead of

Time (WAT) are two known static compilation techniques[11].
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An AOT compiler compiles all the application code on the target device at loading

time before its execution. The resulting machine code is saved in the ROM in order to

be used for future executions. This can improve considerably the Java virtual machine

performance. However, the main drawback of this technique is the startup penalty it

takes to translate the bytecodes of the loaded application into native machine code.

This startup penalty can be significant, even though it is performed only the first time

the application is compiled.

A WAT compiler can compile all the applications on the target device or on the host

development platform before execution. The resulting machine code is stored on the

target device for future execution. There is no penalty startup by using this technique

because all the compilation operations are performed before even the loading process.

However, the Java virtual machine using this technique can loose its portability if the

applications are compiled on a host development platform and executed on a different

one.

Moreover, static compilation techniques are inefficient to load dynamically applica-

tions from other locations. Executing these applications need an interpreter in order

to translate the applications bytecodes into dependent-platform machine code. So, a

Java virtual machine should support compilation and interpretation mode at the same

time for complete execution. Although this strategy can be efficient in the context of

classical Java virtual machine, it cannot be relevant for embedded Java virtual machine.

Handling interpretation and compilation need additional memory space, which is not

available on embedded devices with resources-constrained features.

3.4.3 Dynamic Compilation

Dynamic compilation techniques are very efficient in terms of performance, while they

maintain most of the Java features. In dynamic compilation, Java bytecodes are trans-

lated into machine code at runtime. The resulting machine-dependent binaries are then

executed on the processor of the target device. Most of the dynamic compilation tech-

niques use the method as a unit of compilation. So, when a method is invoked, it is

compiled instead of being interpreted, and the resulting machine code is then executed.

Although compiling and executing a method may take more time than interpreting it,

the fact, that this process is performed once during a Java program execution, makes

dynamic compilation worthy. Eventual invocation of an already compiled method will

be performed by a simple call to its corresponding machine code saved in the cache

memory. As a result, several calls for the machine code of a compiled method will

produce, for sure, a considerable speedup during a Java program execution.

A classical dynamic compiler compiles a method at its first invocation. This means
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that all the invoked methods, even those that are not frequently called, will be compiled,

and the machine code will be saved in the cache. In fact, this strategy of dynamic com-

pilation has some disadvantages. The first one is the time spent to compile infrequently

called methods, while interpreting them can take less time. So, compiling such methods

introduces a time overhead. Indeed, this drawback exists only in the first released strat-

egy of dynamic compilation. Later on, many approaches have been proposed in order to

deal with this problem. Some of them use different compilers to compile frequently and

infrequently called methods. Others use a mixed-mode approach, in which a method is

interpreted until a certain condition is satisfied, then it will be compiled. An example

of such condition can be as follows: the number of method invocations is greater than

a certain threshold. Results show that efficient implementation of such approaches can

solve very important part of this problem and can avoid the unnecessary compilation

time.

Another drawback of dynamic compilation can be the implementation of the com-

piler itself. The compilation is performed at runtime. So, any delay caused by the

compiler can affect directly the performance of the Java virtual machine, and hence,

the performance of the whole Java program execution. For this reason, the compilation

time should be minimized as much as possible. However, this does not mean that we

should only focuss on the efficiency of the compiler. In fact, a compiler, that compiles

methods very quickly and produces a poor quality code, could affect the execution per-

formance. A dynamic compiler needs to balance the compilation time and the quality

of the generated code in order to improve considerably the execution.

Potential disadvantages can exist if the dynamic compilation is applied in embedded

context. Excepting the drawbacks mentioned above, dynamic compilation seems to be a

very efficient technique to enhance Java performance in desktop and servers. However,

embedded systems do not have the same hardware capabilities as desktop and server

systems. The latter have fast busses, hundred of megabytes of RAM and microproces-

sors operating at over 2 GHz with on-chip 512 kilobytes caches, while embedded systems

can have an available memory less than 512 kilobytes to handle the entire Java runtime

environment, 300 kilobytes of RAM, 1 megabytes of flash and ROM, microprocessors

operating at over 32 MHz and low battery capacity. These limited hardware capabil-

ities of embedded systems bind some restrictions on dynamic compilation techniques

and prevent dynamic compilers from accomplishing the same performance results as on

desktop and servers.

Moreover, when thinking about endowing a dynamic compiler into an embedded

Java virtual machine, many implementation issues emerge because of the lack of mem-

ory space. Including code optimization mechanisms that need additional memory space

is practically impossible, from which the difficulty to obtain good quality and smaller

generated code. Furthermore, additional cache management is needed in order to orga-
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nize the storage of generated machine code. The cache memory available in embedded

systems is not enough to store all the code generated by a dynamic compiler. Java byte-

codes are much smaller than native processor instructions, the produced native code

can be 8 times the size of bytecodes. Thus, a cache management mechanism should be

efficiently implemented in order to free unused code and find space for newly generated

machine code. As a result, the implementation of a dynamic compiler should be very

frugal with memory and beneficial considering the costs in memory and power.

Many dynamic compilation approaches have been proposed in order to deal with

all the disadvantages mentioned above and cover all the target platform’s features. In

the sequel, we distinguish the three main approaches: Classical or Just-In-Time (JIT)

dynamic compilation, adaptive dynamic compilation and selective dynamic compilation.

The adaptive and selective are based on the Just-In-Time dynamic compilation and

improve it in some issues. The method is the unit of compilation in the three approaches.

This strategy allows the compiler to use the Java virtual machine services in order to,

gather the required references, arguments and local variables of a particular method,

and determine all the context structures related to it. Using such virtual machines

services avoids complex implementations that require additional memory space and

time to be executed.

Classical or JIT Dynamic Compilation

Just-In-Time (JIT) is the first and original approach proposed for dynamic compilation.

JIT consists in compiling a method when it is invoked for the first time and saving

the generated machine code for future calls. This technique is based on one mode of

bytecode translation, which is the compilation mode, while the interpreter is not needed

any more. This means that all the invoked methods, even those that are not frequently

called, are compiled. This strategy of dynamic compilation has some disadvantages.

The first one is the time spent to compile infrequently called methods, while interpreting

them can take less time. The second drawback is that the quality of generated code is the

same for all the methods, whatever the frequencies of their invocations are. Indeed, this

issue can affect those methods that are invoked very often (sometimes million of times).

Low quality generated code for such kind of methods can lead to poor performance

of the Java virtual machine. Furthermore, this approach is not relevant for embedded

Java virtual machine because it requires large memory space, which is not available in

embedded systems.
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Adaptive Dynamic Compilation

Adaptive Dynamic Compilation (DAC) is an alternative acceleration for JIT compila-

tion. This approach is proposed in order to improve the classical dynamic compilation

and produce different qualities of generated code, depending on the invocation frequency

of each method. It consists in using different compilers that produce different levels of

code quality. A fast compiler, that produces low quality code, is used for infrequently

called methods, while a slow compiler, that produces a high quality optimized code, is

used to translate frequently called methods. All the methods are first compiled with

the fast compiler and then, according to the frequency of a given method, this method

can be chosen to be recompiled by the slow compiler or not. Since frequently called

method can be called thousands and millions of times, spending more time to generate

high quality code can enhance considerably the execution performance. Once a method

machine code is generated by the slow compiler, the recent machine code generated by

the fast compiler is totally discarded and freed from the cache memory. This approach

is not relevant for embedded Java virtual machine because the lack of memory space

makes the implementation of two compilers at the same system almost impossible.

Selective Dynamic Compilation

The Selective Dynamic Compilation (SDC) is proposed in order to improve the Just-In-

Time dynamic compilation and use a mixed mode approach for machine code genera-

tion. The mixed mode approach consists in using both the interpreter and the compiler.

The interpreter is used for infrequently called methods, while the compiler is used for

frequently called methods. A given method will be interpreted until a certain condition

is satisfied, then it will be compiled. This condition can be specified in the compiler

implementation. For instance, a method will be interpreted until reaching the limit

allowed for a method to be interpreted. Reaching this interpretation limit leads to

declare the given method as frequently called method or “hotspot”, which means that

the method should be compiled. The generated code is saved in the cache for future

calls. The strategy followed in this approach makes it relevant for embedded systems.

Not all the invoked methods are compiled, which means that the memory space needed

for compiled code can be managed in order to fit with the memory space available

in embedded systems. A very lightweight implementation of such selective dynamic

compiler is required to reduce the generated code size as much as possible. A detailed

explanation for this approach is presented in the next section.
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3.5 Selective Dynamic Compilation

The selective dynamic compilation is the approach we based on in the implementation

of our Armed E-Bunny selective dynamic compiler targeting ARM processors. It is the

most efficient approach that can be endowed into the embedded Java virtual machine

and can fit with the limited-resource specifications of the embedded systems. Selective

dynamic compilation optimizes programs at runtime, based on information available

only at runtime, thus offering the potential for greater performance and less memory use.

Selective dynamic compilers usually base their optimizations on run-time-computed

values of particular variables and data structures called run-time constants. It deviates

from JIT compilation by selecting and compiling only those Java code fragments that

are frequently executed. An example of Java code fragment can be a method. This

technique can significantly accelerate the virtual machine and at the same time reduces

the memory overhead because only a part of a program is compiled.

A dynamic compilation performs its operations at runtime, so the compilation time

in addition to the generated code execution time are accounted in the overall execution

time of a Java program into the Java virtual machine. Moreover, the compiler and the

generated code are stored in the memory of the target system, which is very limited

for embedded systems. The following are the main constraints that should exist in

a dynamic compiler in order to integrate it efficiently into an embedded Java virtual

machine:

• The compilation time is encountered in the overall execution time. Hence, the

compilation should be as fast as possible.

• The compiler code should be maintained in the target machine memory during

execution. Hence, the size of the compiler code should be as small as possible.

• The performance of a high quality code is better then the performance of low

quality code. Hence, the quality of the generated code should be as high as

possible.

• The generated code size should be as small as possible, particularly for embedded

systems, where the memory space is too limited.

• The acceleration accomplished by endowing such dynamic compiler into the Java

virtual machine should be significant.

The architecture of a selective dynamic compiler is based on five main components,

including the interpreter of the virtual machine. These components are: the method,

the profiler, the VM interpreter, the compiler and the cache manager. Each one of
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Figure 3.3: Dynamic Compiler into JVM

these components has a specific role in translating the Java bytecodes into machine

code. Figure 3.3 shows the architecture of a selective dynamic compiler integrated into

a Java virtual machine. The following subsections explain the components of a dynamic

compiler and shows how dynamic compilation proceeds.

3.5.1 Profiler

The profiler has many related roles and communicates with all the other components

of a dynamic compiler. A profiler has the task to detect the frequently executed piece

of code. The piece of code used in most of the dynamic compilation techniques is

the method. A profiler selects the set of methods where the program spends most

of its time. A detected frequently called method is declared as hotspot method. The

profiler performs its task through three related and consecutive steps. First, it monitors

and traces events that occur during runtime. Second, it sets the cost of these events.

Third, it attributes the cost of these events to specific parts of the program. By doing

that, a profiler is able to forecast future through monitoring past events. In fact, the

future events can be to switch from the interpretation mode to the compilation mode

of the Java bytecodes. Time-based profiling, counter-based profiling and sample-based

profiling are three distinguishable approaches that can be implemented into a dynamic

compilation profiler [18].
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Time-based Profiler

A time-based profiler is based on calculating the time spent in each method, so it is

able to predict if a method is frequently invoked or not. Some variables or instructions

are introduced in the implementation of some bytecodes such as calls, returns, throw

and catch in order to record time. Each time a method is called, the current time is

checked and added to the current called method structure. A method is declared as

frequent method if the calculated time reaches a time threshold. The time threshold

is normally specified in the compiler implementation. This approach is complete in

the sense that all called methods are checked by the profiler. On the other hand, its

main disadvantages are the overhead time and code size resulting from executing and

storing the added variables and instructions. Indeed, these disadvantages reduce the

use of this approach in many dynamic compiler profilers, particularly those addressed

to embedded systems.

Counter-based Profiler

A counter based profiler is based on calculating the number of times a method is

invoked. A counter is added to the structure of each method and is initially set to

zero. This counter is incremented by one each time a given method is executed. It is

incremented also at each back-edge branch if the method includes loop iterations. The

role of the profiler is to, check the counter of the invoked method before translating

its bytecodes, and compare it to the threshold specified in the implementation. If the

method’s counter reaches the threshold, the profiler declares the method as frequently

called or hotspot method. Considering a method as hotspot means that the method

should be compiled. Like time-based profiling, this approach is also complete. Even

though the overhead caused by introducing and updating the method counters is a

disadvantage, the small size of added code makes counter-based profiling efficient and

particularly relevant for embedded systems.

Sample-based Profiler

A sample-based profiler collects its data in a cyclical manner. It samples the running

application periodically when the application reaches a predefined points. Method

entries and loop edges are instances of such points. One strategy of sampling is to

accord to the method containing the loop the sample taken on a loop back-edge, and

to accord to both calling and called methods the sample taken at a method entry.

Another strategy of sampling is to trace the Java stack periodically in order to detect

the methods currently executing and accord samples to them. Whenever the number of

samples of a method reaches the threshold specified in the implementation, the method
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is declared as frequently called or hotspot method, and then it is compiled. The main

advantage of this approach is the reduced overhead. However, it is not complete and

may not cover all the executed methods. Sampling is performed periodically and not

continuously, which means that some methods can be executed without being sampled.

In fact, this incompleteness makes this approach less used in most dynamic compilers,

even though it is useful for limited resources systems.

3.5.2 Compiler

The compiler is the principal component responsible of translating Java bytecodes into

platform-dependent machine code. As mentioned above, many constraints should be

respected and balanced among them according to the characteristics and capabilities

of the target platforms. The most important issue at the end is to integrate into the

machine virtual a compilation mechanism more efficient than interpretation. A compiler

can perform one or more passes over bytecodes and generates the corresponding machine

code. The design of a compiler is based on the following issues: The compilation unit,

the compilation time, the quality of the machine code and the nature of the machine

code (stack-based or register based).

The compilation unit is the fragment of code chosen to be compiled. Specifying the

compilation unit is very important and influences directly the design of the dynamic

compiler [1]. The method is the compilation unit used in most dynamic compilers due

to the following reasons:

• A method is represented by an internal Java virtual machine structure and many

JVM services are dedicated to perform many operations on it. So, it is easy to

identify a method, get its bytecodes, get its arguments and local variables and add

some fields to its structure useful for compilation and machine code execution.

• The switching mechanism between interpretation, compilation and machine code

execution are based on some interpreter control points applied on methods. Due

to the complexity of such mechanisms, re-implementing them is worthless.

• The representation of a method by JVM structure simplifies the cache manage-

ment mechanism. Whenever the cache is full and some machine code are freed,

the new state will be easily updated in the corresponding method structure.

On the other hand, using the method as compilation unit has the following two

main disadvantages:
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• The cache will be quickly full due to the code size of a method. With respect to

the size of code generated each time the compiler is called, only few methods can

be compiled and their corresponding machine code can be stored in the cache.

• Experience shows that only 20% of a method declared as hotspot is really fre-

quently called, while the remaining of the code is infrequently invoked. This

means that the cache is 80% occupied by a code that is not really hotspot.

The compilation is performed at runtime, so the compilation time is part of the

overall execution time and should be as fast as possible. A quick compiler should respect

some constraints in order to attain efficient results . First, the number of passes over

bytecodes should be reduced to a maximum of one or two passes, while the production

of the machine code should be so quick. Second, some dynamic compilers construct

first intermediate representation of bytecodes. This step can be avoided. Moreover,

very few optimizations are permitted during compilation due to the lack of memory

available on embedded systems.

Regarding the quality of the code, high quality code results in high execution per-

formance. The compiler should generate the highest quality possible of machine code,

even if this is very difficult in case of quick compilation strategy. At the same time, a

compiler should take into account the size of the compiler and the size of the generated

code, specifically when integrated into embedded virtual machines.

The nature of the machine code generated is also a very important issue when

designing and implementing a dynamic compiler. It has a big and direct influence

on the size and execution speedup of the generated machine code, on the complexity

of switching between interpretation and compilation mode, and on the compilation

overhead. The stack-based and register-based are the two possible natures of generated

machine code. In stack-based code, all data operations are performed through a stack,

while in register-based code, all data operations are performed using registers. Results

show that generated stack-based machine code for a given function performs 30 percent

more operations than generated register-based machine code for the same function.

Hence, register-based code seems to be more efficient than stack-based code. However,

since Java bytecodes are stack-based, it is easier and faster to generate stack-based

machine code corresponding to a given Java program [31].

The following are three points that should be taken into account when talking about

stack-based versus register-based machine code:

• Register-based code is more compact than stack-based code. Hence, the quantity

of register-based code that can be generated during compilation will be obviously

smaller than the quantity of stack-based code.
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• Register-based code can be run faster than stack-based code because access to

register is faster than access to memory (stack). Hence, register-based code is

more relevant and efficient for Java virtual machine performance.

• Stack-based code is more relevant than register-based code for the switch between

interpretation and compilation mode, which is frequently performed during exe-

cution. The interpretation is stack-based, so switching to stack-based compilation

will be easier and faster. A switch to register-based compilation mode requires an

entire transfer, for all the method’s contexts and variables needed for execution,

from the stack to registers, and vice versa for an inverse switch.

3.5.3 Cache Manager

The role of a dynamic compiler is to compile the bytecodes of a particular method and to

generate its corresponding machine code. Once this machine code is generated, it needs

to be saved in the cache for future execution. Since the size of generated code for a given

method is 4 to 8 times the size of its bytecodes, the cache memory, and in particular

the cache memory of embedded systems, is not sufficient to store all the generated

machine code. Hence, a cache management should be performed in order to free space

for new storages. The main issue in cache management is how to choose the elements

to be freed. Choosing these elements depends on many parameters such as method

size, method compilation time, method invocation frequency, time of the last method

invocation, etc.. In this context, many algorithms are proposed for implementing a

cache manager. In the sequel, we present some known cache management algorithms

used in many dynamic compilers:

LRU (Least Recently Used)

This algorithm is based on a chronological order to access to an element [22]. It chooses

the element that has not been accessed for the longest period of time in order to be

freed from the cache. To perform this task, the time of the last access is associated to

each element and is updated at each eventual access. The drawback of this algorithm

is that it causes cache fragmentation. Since the new stored code may not fit totally in

the freed space, hence some small spaces in the cache will remain free and unusable for

new storage.
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LFA (Least Frequently Accessed)

This algorithm is very similar to LRU. It is also based on a chronological order of

the use of an element. A counter is associated with each element and is incremented

by one each time this element is used. This algorithm chooses the element that has

the smallest counter value to be freed from the cache. The main drawback of this

algorithm is the overhead of adding and updating the element counter, in addition to

cache fragmentation.

LRC (Least Recently Created)

This algorithm is also called FIFO (First In First Out). It is based on a chronological

order of an element loading. The entry to be freed is the oldest among those currently

in the cache. To perform this task, the cache manager checks the time of loading the

element in the cache, which is associated with each element. The main advantage of

this algorithm over LRU and LFA is that it avoids cache fragmentation. The free cache

spaces that remain after inserting elements can remain useful for eventual storage.

Second Chance

This algorithm enhances LRC. The aim of this enhancement is to keep the recently

used elements in the cache. A bit is associated with each element saved in the cache.

This bit is initially set to zero. When an old element is used, this element is set to one.

Once the cache management is performed, the bit of the oldest element is checked. If

its value is zero, the element is freed, otherwise, the bit is reset to zero and the element

is put at the bottom of the list.

LE (Largest Element)

This algorithm chooses the largest element stored in the cache in order to be freed.

This strategy can minimize the number of freed elements during cache management,

but creates more cache fragmentation. The overhead caused by adding information

about the size of each element in the cache is also another drawback of this algorithm.

BFE (Best Fit Element)

This algorithm is based on the size of the new entry to be inserted. It scans the cache

in order to search for the best element size that fits with or greater than the size of the

new element to be stored. If all the element sizes are smaller than the new element size,
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cached elements are grouped in pairs or two and new searches may be applied. The

overhead caused by scanning the cache, sometimes many times, is an essential drawback

of this algorithm.

Full Cache Flush

This algorithm is very simple. Whenever the cache is full and there is no space that fits

with the size of the new entry, all the elements are freed from the cache. Although this

strategy is very lightweight, the main drawback is that the hot entries can be removed.

This issue may lead at the end to additional compilation overhead.

3.6 JVMs Endowed with Dynamic Compilers

Dynamic compilation is a popular approach for acceleration. Almost all the standard

Java virtual machines are endowed with dynamic compilers. In the sequel, we present

four of these virtual machines and we describe briefly the dynamic compilations tech-

niques used inside.

3.6.1 VM Hotspot

The Java HotSpot VM [35], which is the core component of Java 2 Standard Edition,

is equipped with a selective dynamic compiler. Performance critical methods are de-

tected by means of a counter-based profiler with additional heuristics. These heuristics

investigate the caller methods in order to compile them with the triggering method. On-

Stack-Replacement technique is also used to trigger compilation while a method is still

running. The Java Hotspot VM dynamic compiler applies several classical optimiza-

tions and is considered as one of the most efficient in the market. Another important

reason of this efficiency is the aggressive method inlining it applies. Indeed, methods

that are detected frequent are not only compiled but also inlined. The benefit of this

optimization is that it produces larger blocks of code for the compiler to perform op-

timizations. Operating on large blocks of code increases the effectiveness of classical

optimizations. However, using On-Stack-Replacement technique or applying expensive

optimizations such as aggressive method inlining is not adequate for embedded systems

because they require important resources, particularly memory space.
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3.6.2 Intel ORP

Intel ORP is a complete Java virtual machine implementation triggered by Intel. ORP

allows the different Java runtime components to be developed in complete isolation. The

dynamic compiler built inside is based on the Just-In-Time (Classical) approach, which

means that there is no interpreter used inside. At the same time, the compilation is

performed by two different compilers, as in the adaptive approach. The first is called fast

compiler, and the second is called optimizing compiler. All methods are first compiled

by the the fast compiler, and then only the frequently called method are recompiled by

the optimizing compiler. The new generated code for a given method replaces the old

one already generated by the fast compiler. The difference of performance between the

two compilers is approximately 30%.

3.6.3 IBM Jalapeño: Jikes RVM

IBM Jalapeño [2] is a Java virtual machine equipped with a JIT compiler with dif-

ferent levels of optimizations. That is, according to the frequency of a method, this

is compiled with the appropriate level of optimization. The profiler used by Jalapeño

is very complex and is part of a bigger system called Adaptive Optimization System

(AOS). As Java Hotspot VM, the features of IBM Jalapeño cannot be applied in an

embedded context due to the lack of resources. For instance, a JIT approach is not

suitable because it requires that all methods are compiled, whereas embedded systems

lack the necessary memory to store all the methods’ generated code.

3.7 Embedded JVMs Endowed with Dynamic Com-

pilers

Due to its efficiency in terms of performance, dynamic compilation became a popular

approach for acceleration. Almost all standard Java virtual machine are endowed with

dynamic compilers. However, the features of these virtual machines cannot be applied

in an embedded context due to the lack of available resources. An example of these

restricted resources is the memory size, which is a precious resource on embedded

systems.

The deployment of such dynamic compilation techniques into embedded Java virtual

machines faces two major difficulties. First, the size of the dynamic compiler should be

small because it should be maintained in the memory during the program execution.

Second, heavyweight optimizations are not affordable because of their overhead. Hence,
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embedded dynamic compilers should be extremely frugal with memory resources. De-

spite these difficulties, dynamic compilation is also used in CLDC-based embedded

virtual machines [39, 29, 31]. However, except one paper about KJIT [31], no detailed

information about these systems is available in the literature due to commercial rea-

sons. In the sequel, we present the most known embedded Java virtual machines that

are endowed with dynamic compilers.

3.7.1 CLDC Hotspot

CLDC Hotspot VM [39] is an embedded virtual machine introduced by Sun Microsys-

tems. As its name indicates, it is strongly inspired by the standard Java Hotsopt VM

[35]. All the features of Java Hotspot VM (desktop version) that can be adapted to

embedded environment are applied. A selective dynamic compiler is built inside. Per-

formance critical methods are detected by a single statistical profiler. The compilation

is done in one pass. Constant folding, constant propagation and loop peeling are the

three basic optimizations applied. The space required by CLDC Hotspot is almost the

double of the space required by the Kilo virtual machine (KVM). It reaches 1 megabyte.

No more details are provided about the CLDC Hotspot dynamic compiler.

3.7.2 KJIT

KJIT is a lightweight dynamic compiler that uses as its foundation the KVM [31].

KJIT does not use any form of profiling for the simple reason that all methods are

compiled. This strategy seems to be very heavyweight and only feasible in server or

desktop systems. The key idea to make this strategy adequate for embedded Java

virtual machines is to compile only a subset of method bytecodes. This technique is a

good solution to make KJIT adaptive for embedded systems. The remaining bytecodes

continue to be handled by the interpreter. To handle that, efficient execution switches

between the compiler and the interpreter are applied. Whenever one of the interpreted

bytecodes is encountered, a switch back from the compiled mode to the interpreted mode

is performed. This requires an efficient switching mechanism since this operation is

highly frequent. KJIT performs such switch mechanism by pre-processing the bytecodes

before their compilation. However, there is a significant overhead in terms of time and

space required for performing the pre-processing. For instance, the pre-processed code

is 30% larger than the original one.
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3.7.3 Jbed Micro Edition CLDC

Jbed is a Java virtual machine for small mobile devices [29]. Jbed is deployed by

Esmertec AG and intended to IntelXscale and Strong ARM architectures. The dynamic

compiler of Jbed is called FastBCC. It compiles all bytecodes and dynamically loaded

classes at load time instead of waiting their first executions. It links also the loaded

classes into the application. Hence, the execution delay is eliminated. FastBCC is a

small, one-pass compiler embedded in the virtual machine. Results show that Jbed

virtual machine is four time faster then the KVM.

3.7.4 EVM

EVM is an embedded Java virtual machine based on dynamic compilation. It is de-

ployed by Insignia for its Jeode platform[23]. All the acceleration techniques inside it

are designed to meet the Java specifications for resource-constrained devices. More-

over, an adaptive dynamic compiler is embedded in it. It uses also a precise concurrent

garbage collection and a predictable system behavior. Only the frequently executed

code is compiled and the resulting generated code is stored into a memory buffer. Ad-

ditional optimizations are also performed on the stored generated code. Results show

that EVM is six times faster than an interpretive virtual machine.

3.7.5 IBM J9

IBM J9 is a fast Java virtual machine deployed by IBM and based on JDK1.2.2 tech-

nology [33]. J9 is addressed for embedded devices. It contains an adaptive dynamic

compiler supported on many PowerPC platforms. Many features can be selected at

runtime in order to meet the target platform characteristics, so memory utilization can

be minimized differently depending on each device. Moreover, J9 supports a precise

garbage collection that ensures no memory leaks and manages automatically memory

allocation and de-allocation.

3.7.6 Wonka

Wonka is a Java virtual machine deployed by Acunia and addressed for resource-

constrained embedded systems. It is an extremely portable virtual machine for a

variety of markets and does not require a host operating system. It contains a con-

current garbage collection that manipulates very effectively the memory and keeps the

minimum fragmentation. A J-Spot native compiler is intended to be employed in the
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next version of Wonka.

3.8 Conclusion

Some disadvantages can exist if the dynamic compilation is applied into embedded con-

text. Dynamic compilation seems to be a very efficient technique to accelerate Java

performance in desktop and servers. However, embedded systems do not have the same

hardware capabilities as desktop and server systems. These limited hardware capabil-

ities of embedded systems bind some restrictions on dynamic compilation techniques

and prevent dynamic compilers from accomplishing the same performance results as

on desktop and servers. Moreover, when thinking about endowing a dynamic compiler

into an embedded Java virtual machine, many implementation difficulties are imposed

due to the lack of memory space and battery life available. In this chapter, we pre-

sented first the optimization techniques for the Java virtual machine, and particularly

we focussed on the software techniques. Then, we discussed the dynamic compilation

and we showed its performance efficiency over other techniques. Finally, we detailed

dynamic compilation into embedded context and we presented some virtual machines

endowed with dynamic compilers.



Chapter 4

Armed E-Bunny

4.1 Introduction

In this chapter, we describe the elaboration of a dynamic compiler, called Armed E-

Bunny, that targets the ARM platform. The proposed system uses, as starting virtual

machine, the last version of Sun’s Kilo virtual machine (KVM). The architecture of

Armed E-Bunny is inspired by [10]. This technology is based on a selective dynamic

compiler built inside the J2ME/CLDC (Java 2 Micro Edition for Connected Limited

Device Configuration). Our results show that our work comes up with an efficient,

lightweight and low-footprint accelerated Java virtual machine ready to be executed

on ARM embedded machines. This chapter presents first the architecture of ARM

platform, then it details the architecture, the design as well as the implementation and

debugging issues of Armed E-Bunny. Our experimental results prove that a speedup of

360% over the last version of Sun’s KVM is accomplished by Armed E-Bunny with a

footprint overhead that does not exceed 119 kilobytes.

4.2 ARM Platform Architecture

As long as the use of wireless systems such as PDAs, cell phones, pagers, etc. is

becoming a need in our everyday life, the ARM architecture is becoming the industry

leading 16/32 bit embedded system processor solution due to its performance and RISC

(Reduced Instruction Set Computer) features. ARM powered microprocessor are being

routinely designed into a wider range of products than any other 32-bit processor.

This wide applicability is made possible by the ARM architecture, resulting in optimal

system solutions at the crossroads of high performance, small memory size and low

power consumption. In this section, we present a brief description of ARM architecture,

and particularly the issue needed for the implementation of an ARM assembler. ARM
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Processor Mode Description

User user Normal Program Execution mode

FIQ fiq Fast Interrupt for high speed data transfer

IRQ irq Used for general-purpose interrupt handling

Superviser svc A protected mode for the operating system

Abort abt Implements virtual memory and/or memory protection

Udefined und Supports software emulation of hardware processors

System sys Runs privileged operating system tasks

Table 4.1: ARM Processor Mode

processor modes, ARM registers, ARM instruction set, ARM instruction decoding and

subroutine calls are the main points discussed in the following subsections [19, 20].

4.2.1 ARM Processor Modes

ARM is an architecture that supports seven processor modes. Table 4.1 illustrates these

modes. Switches between modes can be performed under software control, by external

interrupts or by exception processing. The user mode is the mode mostly used in most

application program execution. User mode does not allow the access to some protected

system resources or to switch to other modes. All modes, except the user mode, are

known as privilege modes. They have full access to system resources and can switch

among them freely. In our case, the user mode is used all the time.

4.2.2 ARM Registers

ARM has a total of 37 registers divided as follows: 30 general purpose registers, 6 status

registers and one register for the program counter. Only 15 of the 30 general purpose

registers are available at a time and vary from one mode to another. Table 4.2 shows

all these registers. We use only the user mode registers in the implementation of our

compiler. The following is a brief description for the role of each user mode register

(R0-R15 ):

R0-R3 They hold the first four words of incoming arguments and intermediate values

within a routine. R0 and R1 can hold the return values of a subroutine.

R4-R10 These are truly general purpose registers with no special task assigned to

them by the processor architecture.

R11 It is reserved to hold the value of the frame pointer in the stack. It is also known

as FP.



Chapter 4. Armed E-Bunny 55

User System Supervisor Abort Undefined Interrupt Fast Interrupt
R0 R0 R0 R0 R0 R0 R0
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8 R8 fiq
R9 R9 R9 R9 R9 R9 R9 fiq
R10 R10 R10 R10 R10 R10 R10 fiq
R11 R11 R11 R11 R11 R11 R11 fiq
R12 R12 R12 R12 R12 R12 R12 fiq
R13 R13 R13 svc R13 abt R13 und R13 irq R13 fiq
R14 R14 R14 svc R14 abt R14 und R14 irq R14 fiq
PC PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR svc SPSR abt SPSR und SPSR irq SPSR fiq

Table 4.2: ARM Registers

N VCZ SBZ FI ModeSBZ

  31   30   29   28   27        …         8       7    6         5            4         …      0

Figure 4.1: Structure of the Processor Status Registers

R12 It is used to hold temporary and intermediate values needed for subroutine calls.

It can hold also other values as general purpose registers.

R13 It is reserved to hold the value of the stack pointer. It is also know as SP.

R14 It is reserved to hold the value of the return address for a subroutine. When a

subroutine call is performed, R14 is set to the value of the next instruction. It is

also known as LP.

R15 It is reserved to hold the program counter. It is used to identify which instruction

to be performed next. It is often referred as an instruction pointer. It is also known

as PC.

There is also another register known as CPSR (Current Processor Status Register).

It holds the current status of the processor. This includes various condition code flags,

interrupt status, processor mode and other status and control information. Figure 4.1

shows the structure of this register. As shown in the figure, the status register contains

4 flag bits:
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N Negative flag.

Z Zero flag.

C Carry flag.

V Overflow flag.

Many instructions, including comparison, arithmetic, logic and move, can modify

these flags. Since all the instructions are executed under a particular condition, all of

them check the values of these flags in order to verify if the condition is satisfied or not.

This point will be explained in the instruction set section.

4.2.3 ARM Instruction Set

The ARM architecture [19, 20] is based on 32 bit Reduced Instruction Set Computer

(RISC) principles, and the instruction set and related decoding mechanism are much

simple than those of microprogrammed Complex Instruction Set Computer. Table 4.3

shows the ARM instruction set summary with the role of each one of them and figure

4.2 shows the format of these instructions. This format is used in the implementation

of the assembler of our dynamic compiler. The instruction machine code size is fixed

to 32 bits. Although this simplicity results in a high instruction throughput and im-

pressive speedup, it requires sometimes the generation of many instructions to perform

a simple operation or to replace some un-existing instructions. For instance, to load

an immediate value greater than 255 into a register, a list of instructions including bits

manipulation operations are performed. Another example is the code generation of the

division arithmetic operation.

Condition Field

As mentioned in the register section, the CPSR flags are needed to verify the condition

satisfaction. All ARM instructions are conditionally executed with respect to the CPSR

condition code and the instruction’s condition field. The instruction’s condition field

specifies the condition under which the instruction can be executed. During execution,

a verification is performed in order to verify if the C, N, Z and V flag values fulfil

the condition. If the condition is satisfied, the instruction is executed, otherwise it is

ignored. Table 4.4 shows the fifteen possible conditions that can be represented in the

4 bits condition field of an instruction.
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Mnemonic Instruction Action
ADC Add with carry Rd := Rn + Op2 + Carry
ADD Add Rd := Rn + Op2
AND AND Rd := Rn AND Op2
B Branch R15 := address
BIC Bit Clear Rd := Rn AND NOT Op2
BL Branch with Link R14 := R15, R15 := address
BX Branch and Exchange R15 := Rn, T bit := Rn[0]
CDP Coprocessor Data Processing Coprocessor-specific
CMN Compare Negative CPSR flags := Rn + Op2
CMP Compare CPSR flags := Rn - Op2
EOR Exclusive OR Rd := (Rn AND NOT Op2)

OR (Op2 AND NOT Rn)
LDC Load Coprocessor from Memory Coprocessor Load
LDM Load Multiple Registers Stack Manipulation (POP)
LDR Load Register from Memory Rd := (address)
MCR Move CPU Register to Coprocessor Register cRn := rRn {<op>cRm}
MLA Multiply Accumulate Rd := (Rm * Rs) + Rn

MOV Move Register or Constant Rd := Op2
MRC Move from Coprocessor Register to CPU Register Rn := cRn {<op>cRm}
MRS Move PSR status/flags to Register Rn := PSR
MSR Move Register to PSR status/flags PSR := Rm

MUL Multiply Rd := Rm * Rs

MVN Move Negative Register Rd := 0xFFFFFFFF EOR Op2
ORR OR Rd := Rn OR Op2
RSB Reverse Subtract Rd := Op2 - Rn

RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry
SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry
STC Store Coprocessor Register to Memory address := CRn

STM Store Multiple Stack Manipulation (PUSH)
STR Store Register to Memory (address) := Rd

SUB Subtract Rd := Rn - Op2
SWI Software Interrupt OS call
SWP Swap Register with Memory Rd := [Rn], [Rn] := Rm

TEQ Test Bitwise Equality CPSR flags := Rn EOR Op2
TST Test Bits CPSR flags := Rn AND Op2

Table 4.3: ARM Instruction Set
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Data Processing/PSR Transfer

Halfword Data Transfer: Register

Branch and Exchange

Single Data Swap

Multiply Long

Multiply

Software Interrupt

Coprocessor Register Transfer

Coprocessor Data Opration

Coprocessor Data Transfer

Branch

Block Data Transfer

Undefined

Single Data Transfer

Halfword Data Transfer:immediate

Figure 4.2: ARM Instruction Set Formats

Code Suffix Flags Meaning
0000 EQ Z set equal
0001 NE Z clear not equal
0010 CS C set unsigned higher or same
0011 CC C clear unsigned lower
0100 MI N set negative
0101 PL N clear positive or zero
0110 VS V set overflow
0111 VC V clear no overflow
1000 HI C set and Z clear unsigned higher
1001 LS C clear and Z set unsigned lower or same
1010 GE N equals V greater or equal
1011 LT N not equal to V less than
1100 GT Z clear AND (N equals V) greater than
1101 LE Z set OR (N not equal to V) less than or equal
1110 AL (ignored) always

Table 4.4: Condition Code Summary
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Figure 4.3: ARM Stack during Subroutine Call

4.2.4 Subroutine Call

A list of instructions are executed to save and restore contexts before and after a

function call. They are called respectively Prologue and Epilogue [7]. During Prologue,

a sequence of instructions pushes the incoming arguments in R0, R1, R2 and R3 to

the argument locations in the stack, saves the values of the registers R11, R13, R14

and R15 and updates the stack parameters. During Epilogue, the saved registers are

restored and the returned values are loaded in R0 and/or R1 if they exist. Figure 4.3

shows the stack format during a subroutine call.

4.3 Armed E-Bunny Architecture

Armed E-Bunny contains six major components: the Method Initializer, the Profiler,

the KVM‘s Interpreter, the Machine Code Execution engine, the ARM compiler and

the cache manager. Figure 4.4 depicts the architecture of Armed E-Bunny and shows

the relationship between its components. The Virtual Machine Execution engine and

the Interpreter exist already in KVM. The fragment of code on which interpretation or

compilation is applied is the method.

Many features like reduced memory footprint and efficient use of different stacks

make our Armed E-Bunny an appropriate Java acceleration technology for embedded

systems. Armed E-Bunny is a selective dynamic compiler. Only the frequently called

methods are compiled and saved in the cache structure. This strategy led us to have

reduced memory footprint results that does not exceed 119KB. Furthermore, the use

of two stacks (one for interpretation and one for compiled method execution) is a real

advantage to preserve the portability to a high extend of the virtual machine. However,

the drawback of this way is its complexity due to the following reasons. First, method’s

related data (e.g arguments) should be transferred between the Java and native stacks
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Method Initializer

Profiler

Interpreter

Machine Code
Execution
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Figure 4.4: Armed E-Bunny Architecture

when necessary. Second, since ARM architecture specifies a technique for a subroutine

call that relies on the registers more than the stack, we were obliged, each time a

method is called, to transfer data needed (e.g subroutine arguments) from the stack to

registers and vice versa. Here we describe the mechanism of method interpretation and

compilation.

Initially a method is supposed to be interpreted. Once the method is loaded by

the virtual machine, the profiler checks its frequency by verifying if its counter has

reached the threshold defined in our implementation. The result of this verification

identifies if the method is hotspot 1or not. If it is recognized as hotspot, a quick switch

to the Machine Code Execution or to the ARM Compiler is performed by the profiler.

Otherwise, the Interpreter takes its advantage over the other components and continues

its work normally.

During the switch mechanism, two cases are possible. If the method is already

compiled, the reference that points to its machine code in the cache is called. Otherwise,

the ARM compiler translates the given method into ARM machine code and stores it in

the cache. Once the translation is completed, the corresponding machine code is called

and a reference to this code is saved in the structure of the method for future calls.

Detailed explanation about all these mechanisms is described in section 4.4. Here we

highlight the roles of the six main components of our proposed embedded ARM dynamic

1Frequently called method.
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compiler’s architecture and we describe the interaction between its components.

Method Initializer

This component already exists in the virtual machine. Its is responsible for loading all

the method’s references and parameters needed for both interpretation and compilation.

Profiler

The profiler has many related roles and communicates with all the other components.

By checking the method’s counter, this component is able to identify if a method is a

hotspot or not and specify the mode in which the decoding should be performed. Once

a switch to the compilation mode is done, additional role to the profiler allows it to

choose either to execute the method’s corresponding machine code found in the cache

directly or to call the compiler and then run the relevant machine code. The ARM

compiler is called only if the method is not already compiled.

Interpreter

The interpreter of KVM decodes the bytecodes of a given method into executable

machine code. In Armed E-Bunny, the interpreter communicates with the profiler

before starting its decoding process. If the method is identified as a hotspot, the

interpreter stops its work and the profiler switches to other components.

Machine Code Executer

This component is responsible of invoking the machine code of a method. Once the

stacks and the registers are filled with the data needed for method execution, the

reference of the machine code found in the cache is called. A possible switch back to

the interpreter is triggered from this component.

ARM Compiler

The ARM compiler is called by the profiler. It is a one pass compiler. Its role is to

go through the bytecodes of a given method and to generate the corresponding ARM

executable machine code. Once the generation is done, a management of the cache

is applied, if needed, and the code is saved inside. A reference to the generated code
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is saved in the method structure for future invocations. In some special cases, the

compiler switches to the interpreter in order to gather some information or to invoke

some complicated native methods and then returns back to continue its translation.

Detailed explanation about its functionality is provided in section 4.4.

Cache Manager

Generated native code is saved in a particular structure in the permanent space in

the heap called the cache. Since this structure has a fixed size, a management should

be applied in order to find enough space for the generated code. This management

process is invoked only if the cache is full. Actually, this process passes through all

the methods generated in the cache, selects the ones that have not been called for the

largest period of time and removes them. We use the LRU algorithm (Least Recently

used) [22]. A queue is used to keep the chronological order of invoked methods. This

queue is updated each time a compiled method is invoked. The only disadvantage in

LRU algorithm is that some methods may be recompiled several times. However, our

experiments show its efficiency.

4.4 Armed E-Bunny Design and Implementation

Our system covers, besides the compilation of all kind of bytecodes, the different issues of

the integration of a dynamic compiler into a virtual machine such as garbage collection,

exception handling, etc. In this section, we discuss in detail the design of Armed E-

Bunny. Profiling and mode switching, one pass method compilation, garbage collection,

exception handling and threads are the following main points discussed.

4.4.1 Profiling and Mode Switching

The profiler of Armed E-Bunny performs simple check over the frequency of a method

in order to identify it as hotspot or not hotspot. If a method is recognized as hotspot, a

switch from interpretation to compilation mode is applied. Otherwise, the interpreter

continues its execution. In order to perform this check, a counter is added to the

structure of the method and is updated each time the method is called.

Once the virtual machine finishes loading the parameter of a method, the profiler

compares the value of its counter to the threshold specified in the implementation.

Depending on the result, the profiler either
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// Profiler

if (methodCounter >= threshold)

begin //Hotspot Method

if (currentMethodNotCompiled)

compileCurrentMethod;

if (currentMethodCompiled)

begin //Machine code execution

//The 3 following instructions prepare the native

//stack before execution

PushNativeStack methodArguments;

LeaveSpace; //for local variables

LeaveSpace; //for returned values

call currentMethodMachineCode;

popNativeStack returnedValue;

pushJavaStack returnedValue;

end //Machine Code execution

end //Hotspot Method

Table 4.5: Profiler Algorithm

• compiles the method and then executes its corresponding generated code if its

counter reaches the threshold and it is not already compiled. Or,

• executes the method’s generated codes if its counter reaches the threshold and it

is already compiled. Or,

• continues the interpretation of the corresponding method.

When one of the first two cases is chosen, all the method parameters and information

needed are transferred from the Java stack to the native stack before execution. Then,

the results are pushed back in the Java stack after finishing the execution of the code

generated. Table 4.5 summarizes briefly the implementation of the profiler.

4.4.2 One Pass Method Compilation

Our compilation spans over a lightweight one pass compilation technique that generates

a code of reasonably good quality. The generated code is stack-based as Java bytecode,

but uses many information that are computed at the compilation level. The main
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role of the compiler is to pass through the method bytecodes and translate them into

executable machine code (binaries) for ARM machines. The generated code is saved in

the permanent memory and a reference to it is saved in the structure of the method for

future calls.

In addition to bytecodes translation, and like all compilers, a list of ARM instruc-

tions are generated at the beginning of each method in order to save the values of

some registers and variables. Also, an opposite list is generated at the end of the same

method to restore the saved values and switch back to the interpreter. These two pro-

cesses are called respectively Machine Code Prologue and Epilogue and are used to save

and restore contexts. This section explains in details all the steps that our compiler

passes through.

Machine Code Prologue and Epilogue

Re-establishing the calling method context after the execution of the called method,

handling native garbage collection and manipulating threads are the main reasons for

generating the prologue and epilogue. During prologue, the values of the registers

R10-R15 are pushed into the native stack, the value of frame pointer is saved in the

thread data structure, the reference of the generated code is saved in the method data

structure and the current method counter is incremented by 1. During epilogue, the

values of the registers R10-R15 are restored and the value of the frame pointer saved in

the thread data structure is updated. Indeed, the prologue instructions figure on top of

the method generated code and the epilogue instructions figure in the generated code

of the return bytecodes (return, ireturn, areturn and lreturn). Table 4.6 shows the set

of ARM assembly instructions used for the prologue and epilogue.

Bytecodes Translation

Unlike common compilers, Armed E-Bunny is based on a bytecodes translation tech-

nique which avoids complex computations. The translator passes through the method’s

bytecodes using a while loop, identifies the bytecode and then generates its correspond-

ing ARM machine code. The machine code generation is implemented by following a

top down strategy. First, each bytecode is translated to a list of C functions called

’Gen’ functions (e.g GenMOV ). Each one of them is able to generate a list of one or

more ARM assembly language instructions. Second, inside the ’Gen’ functions, each

instruction is transformed to its equivalent in ARM machine code hexadecimal form by

our own ARM assembler implemented inside the virtual machine. Finally, each time

an instruction is generated, there is a function responsible of saving it into a frame in

the MachineCode table to be eventually executed. Table 4.7 shows an example of such
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//begin Prologue

mov R12, R13;

push R12;

push R10;

mov R10, R13;

mov CurrentThread->LastFramePointer, R10;

push R14;

push R11;

//begin Epilogue

pop R11;

pop R14;

pop R10;

pop R12;

mov R13, R12;

mov CurrentThread->LastFramePointer, R10;

Table 4.6: Prologue and Epilogue

Cond 00 I Opcode S Rn

Rd Operand 2

31               28 27  26 25 24               21 20 19                     16

15               12 11                                                                           0

Figure 4.5: Data Processing Instruction

translation technique.

Actually, our ARM assembler that is implemented inside the virtual machine does

not perform the work of a real assembler. However, its role is to transform directly part

of the assembler instructions into ARM machine code ready to be executed. We refer

in our implementation to the documentation of ARM assembly language and we follow

the same architecture used in transforming assembly instruction to executable machine

code. Figure 4.5 shows the binary representation of the data processing instructions

which includes all the arithmetic (e.g. add, sub), logic (e.g. and, or), shifts and moves

instructions.

The size of all machine code instructions is 32 bits. The first 12 bits are used

for representing the second operand. The register Rn is the first operand register.

The register Rd is the destination register, S (bit 20) sets the condition code and

permits to update the values of the CPSR flags. The bits 21 to 24 specify the opcode
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IADD bytecode Implementation

//begin

GenPopToRegister(R0);

GenAddRegisterToRegisterContent(R13,R0);

//end

GenPopToRegister(R0) Implementation

//begin

//This function generates the hexadecimal values

//of the assembler instruction

SetMachineCode(0x........); //ldr R0, [R13]!

//end

GenAddRegToRegContent(R13,R0)

Implementation

//begin

//This function generates the hexadecimal values

//of the assembler instruction

SetMachineCode(0x........); //ldr R1, [R13]

SetMachineCode(0x........); //add R1, R0

SetMachineCode(0x........); //str [R13], R1

//end

SetMachineCode(0x........)

Implementation

//begin

*(MachineCodeTable) = 0x........;

//end

Table 4.7: Machine Code Generation
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of an instruction. The bit I specifies if the second operand is an immediate value

and the last four bits sets the condition under which the instruction will be executed.

Since all the instructions size is fixed, in some cases we were obliged to represent an

assembly instruction by a set of many machine code instructions. A machine code

instruction is the 32 bits binary number that is understood by the ARM microprocessor

(e.g 0xe3a01002 is the machine code representation of mov R1, R2 ). For instance,

loading an immediate value in a register requires the generation of a sequence of many

instructions in addition to many bit-manipulation operations. Table 4.8 shows the

implementation of this mechanism.

The above strategy of translation is applied on all the bytecodes, even though we

differentiate them with respect to their implementation complexity and functionalities.

Some bytecodes such as loads (e.g. iload), stores (e.g. astore), stack manipulation

(e.g. push, pop), arithmetic except division, logic and shift (e.g. iadd, iand, ishr), and

branching (e.g. ifne, ificmpeq)are directly translated into machine code, which repro-

duces the interpreter behavior on the native stack. Other bytecodes such as field access,

object creation, array manipulation, method invocation, return, monitor, casting and

exception require some virtual machine services (e.g. method lookup, field reference

resolution) at runtime in order to be translated. Generating the corresponding native

code instruction by instruction, including virtual machine services, yields a complex and

very bulky code. For this reason, we adopted in Armed E-Bunny a different approach,

which allows to call these services from the native code. In addition to calling virtual

machine services, we implemented some C functions to generate some complicated oper-

ations of some bytecodes. These C functions use the same stack we use for native code,

so we do not need to transfer the method parameters to the Java stack each time we

need to switch to C mode. Hence, the resulting generated machine code is compact and

less complex. In the sequel, we present the generated ARM assembly instructions of a

representative bytecode for the mostly used category of bytecodes, distinguished with

respect to their functionalities. Notice that the following ARM assembly instructions

are represented in hexadecimal before saving them into the MachineCode table.

Loads, Stores and Stack Manipulation Bytecodes This category includes the fol-

lowing bytecodes: aconst null, iconst x, lconst x, bipush, sipush, ldc, ldc w, ldc2 w,

iload, iload x, lload, lload x, aload, aload x, iallaload, aaload, baload, caload, sa-

load, istore, istore x, lstore x, astore x, iastore, lastore, aastore, bastore, castore,

sastore, pop, pop2, dup, dup x1, dup x2, dup2, dup2 x1, dup2 x2, swap. Bytecodes

of this category perform operations on the top of the stack, load local variables

and constant pool entries onto the operand stack and registers, and store the

register and stack values onto local variables. Table 4.9 shows the translation of

istore bytecode.
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// Move an immediate value imm into a register Reg

// The function InstSetMachineCode fills the table of MachineCode

// with the ARM machine code

if(imm <= 255 && imm >= 0)

InstSetMachineCode(0xe3a00000 | (((int) Reg) << 12) | ((BYTE) imm));

// mov Reg, (BYTE) imm

else if(imm > 255 && imm <= 65535)

{
InstSetMachineCode(0xe3a00000 | (((int) Reg) << 12) | ((BYTE) imm));

// mov Reg, (BYTE) imm;

InstSetMachineCode(0xe3a00000 | ((BYTE) (imm>>8));

// mov R0, (BYTE) (imm>>8);

InstSetMachineCode(0xe1900400 | (((int) Reg) << 16) | (((int) Reg) << 12));

// orr Reg, R0<<8;

}
else if(imm > 65535 && imm <= 16777215)

{
InstSetMachineCode(0xe3a00000 | (((int) Reg) << 12) | ((BYTE) imm);

// mov Reg, (BYTE) imm;

InstSetMachineCode(0xe3a00000 | ((BYTE) (imm>>8));

// mov R0, (BYTE) (imm>>8);

InstSetMachineCode(0xe3a01000 | ((BYTE) (imm>>16));

// mov R1, (BYTE) (imm>>16);

InstSetMachineCode(0xe1900400 | (((int) Reg) << 16) | (((int) Reg) << 12));

// orr Reg, R0<<8;

InstSetMachineCode(0xe1900801 | (((int) Reg) << 16) | (((int) Reg) << 12));

// orr Reg, R1<<16;

}
else

{
InstSetMachineCode(0xe3a00000 | (((int) Reg) << 12) | ((BYTE) imm);

// mov Reg, (BYTE) imm;

InstSetMachineCode(0xe3a00000 | ((BYTE) (imm>>8));

// mov R0, (BYTE) (imm>>8);

InstSetMachineCode(0xe3a01000 | ((BYTE) (imm>>16));

// mov R1, (BYTE) (imm>>16);

InstSetMachineCode(0xe3a02000 | ((BYTE) (imm>>24));

// mov R2, (BYTE) (imm>>24);

InstSetMachineCode(0xe1900400 | (((int) Reg) << 16) | (((int) Reg) << 12));

// orr Reg, R0<<8;

InstSetMachineCode(0xe1900801 | (((int) Reg) << 16) | (((int) Reg) << 12));

// orr Reg, R1<<16;

InstSetMachineCode(0xe1900c04 | (((int) Reg) << 16) | (((int) Reg) << 12));

// orr Reg, R2<<24;

}

Table 4.8: Loading Immediate Value into a Register
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// istore : Store integer into local variable

{
//[ ]: means the content of

//fsize is the number of local variables of the current method

//The displacement is multiplied by 4 because the addresses

//in the stack grow by 4

int index=ip[1];

//ip is the address of the bytecode and ip[1] is the content of ip+1

ldm sp!, {Rn};
//pop the content of SP (top of the stack) to register Rn

str Rn, [R10, 4*fsize-index+3];

//Store Rn at the address [R10]+(4*fsize-index+3)

//R10 contains the frame pointer

//(4*fsize-index+3) is an operation that calculateds the location

//of the local variable in the stack

}

Table 4.9: istore x Translation

Arithmetic and Logical Bytecodes This category includes the following bytecodes:

iadd, ladd, isub, lsub, imul, lmul, idiv, ldiv, irem, lrem, ineg, lneg, iand, land, ior,

lor, ixor, lxor, iinc. Bytecodes of this category perform arithmetic and logical

operations. Table 4.10 shows the translation of isub bytecode.

Shift and Type Conversion Bytecodes This category of bytecodes includes the

following bytecodes: ishl, lshl, ishr, lshr, iushr, lushr, i2l, l2i, i2b, i2c, i2s. Byte-

codes of this category perform shift and type conversion operations. They are

mostly executed through the ARM mov instruction. Table 4.11 shows the trans-

lation of ishr bytecode.

Branching Bytecodes This category includes the following bytecodes: ifeq, ifne, iflt,

ifge, ifgt, ifle, if icompeq, if icompne, if icmplt, if icmpge, if icmpgt, if icmple,

if acmpeq, if acmpne, goto, tableswitch, lookupswitch, goto w. Bytecodes of this

category perform unconditional and conditional branching, which can serve for

the if/else, switch and loop operations. Branching can be performed in two ways:

forward and backward. When applying backward branching, a simple jump to

the address of the instruction already generated is applied. Such operation is

not complicated since the addresses of all the generated instructions are saved at

the compilation time in a defined structure. On the other hand, when applying

forward branching, the address of the instruction or bytecode to which the jump
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// isub : Subtract integer

{
ldm sp!, {Rd};
//pop the content of SP (top of the stack) to register Rd

ldm sp!, {Rn};
//pop the content of SP (top of the stack) to register Rn

sub Rn, Rn, Rd;

//Rn=Rn-Rd

stm sp!, {Rn};
//push the register Rn to the content of SP (top of the stack)

}

Table 4.10: isub Translation

// ishr : Arithmetic shift right

{
ldm sp!, {Rd};
//pop the content of SP (top of the stack) to register Rd

ldm sp!, {Rn};
//pop the content of SP (top of the stack) to register Rn

mov Rn, Rn, asr Rd;

//shift right arithmetically Rd times the content of Rn

stm sp!, {Rn};
//push the register Rn to the content of SP (top of the stack)

}

Table 4.11: ishl Translation
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// goto : Branch always

{
if(backward branch)

Generate jump instruction;

else //forward branch

Leave free space;

Continue bytecode generation Until reaching the target bytecode;

if(target bytecode reached)

{
Load the address of the corresponding free space leaved;

Generate jump instruction at the loaded address;

}
}

Table 4.12: goto Translation Algorithm

should be performed does not exist yet in the structure containing the addresses.

For this reason, the complete translation of the forward branching is postponed

until the target bytecode is reached and compiled, while the address of the un-

complete generated instruction is saved in a particular structure defined for this

purpose. Whenever the compiler reaches the target instruction or bytecode, the

address of the uncomplete generated instruction is loaded and its content is filled

with the corresponding ARM machine code. Table 4.12 shows the translation

algorithm of goto bytecode.

Allocation, Array Manipulation and Field Access Bytecodes This category in-

cludes the following bytecodes: new, newarray, anewarray, arraylength, multi-

anewarray , putfield, getfield, putstatic, getstatic. Bytecodes of this category cre-

ate and manipulate objects and arrays, and access to object fields using symbolic

references in order to get or set their values. Indeed, such bytecodes need to call

some KVM services in order to resolve field and class references, initialize classes

and allocate memory space in the heap. To deal with that, we implement some

functions in ARM assembly and C languages in order to call these KVM sub-

routines and return the resolved references and results into registers. Table 4.13

shows the translation of getfield bytecode.

Invoke Bytecodes This category includes the following bytecodes: invokeVirtual, in-

vokeSpecial, invokeInterface and invokeStatic. Bytecodes of this category permit

a method to call another method. In fact, such bytecodes need to call some

KVM services such as method reference resolution and method lookup in order to
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// getfield : get field value in object

{
mov R0, ip;

// ip is the address of the bytecode

ldm sp!, {R1};
//pop the content of SP (top of the stack) to register R1

mov LP, PC;

mov PC, &getfield function;

//These two instructions are used to call the function

//getfield function

//The arguments of getfield function ip and object reference

//are sent into R0 and R1. The function getfield function

//calls some KVM services to get the field value of the

//addressed object and return the result into the register R0

stm sp!, {R0};
//push the register R0 to the content of SP (top of the stack)

}

Table 4.13: getfield Translation

load the method references, parameters and local variables and verify them. To

deal with that, we apply the same strategy as with the allocation, array manip-

ulation and field access bytecodes, i.e implementing some functions to call these

KVM subroutines. Moreover, according to our strategy of compilation, compiled

method can only call a compiled or native method, which means that a switch

to interpretation mode is not allowed at this level of execution. Hence, there are

three different cases to be treated. First, if the invoked method is native, a special

techniques is used in order to call the corresponding native function. This tech-

nique is detailed in the section ”Java Native Methods”. Second, if the invoked

method is already compiled, a simple call to its executable machine code is per-

formed. The third case is when the method is not yet compiled. In such case, the

method is first compiled and then its generated machine code is executed. Table

4.14 shows the translation of invokeVirtual bytecode.

Return Bytecodes This category includes the following bytecodes: return, ireturn,

areturn and lreturn. Bytecodes of this category are always placed at the end of

a method in order to return to the calling method. In addition to the return

operation, such bytecodes restore the calling method context (epilog) by pushing

the returned values in the stack, restoring the old values of the status registers

and deleting the method frame from the stack. Table 4.15 shows the translation
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// invokeVirtual : invoke virtual method

{
mov R0, ip;

// ip is the address of the bytecode

sub SP, SP, #8;

//This instruction is used to leave 2 empty spaces

//in the native stack

mov LP, PC;

mov PC, &invokevirtual function;

//These two instructions are used to call the function

//invokevirtual function. The arguments of invokevirtual function ip

//is sent into R0. The function invokevirtual function

//returns its results into R0, R1 and the top of the native stack

//Switch// R0

1: add SP, SP, R1

//If the value of R0 is 1, this means that the called method

//is Java native and was treated in the function

//invokevirtual function

//This instruction is used to update the native stack

0: ldr R0, [SP]

//If the value of R0 is 0, this means that the address of the

//method to be executed is sent in the register R1 and the

//number of local variables is pushed at the top of the native stack

sub SP, SP, R0

//This instruction is used to leave empty space for local variables

mov LP, PC;

mov PC, R1

//These two instructions are used to call the machine code

//of the method

add SP, SP, R0

//This instruction is used to update the native stack

//after the method call

UPDATE Interpreter Global Varibles;

}

Table 4.14: invokeVirutal Translation
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// return : return from method

{
ldm R13!, {R11, R14, R10, R12};
//This instruction is used to pop the top four values

//in the stack into R11, R14, R10 and R12 respectively

mov R13, R12;

mov CurrentThread->LastFramePointer, R10;

mov R0, (fsize*4)+8;

//fsize is the number of local variables of the current method

//(fsize*4)+8) is the total frame size reserved in the stack

//for a given method

//fsize is multiplied by 4 because the addresses

//in the stack grow by 4

mov PC, LP;

//This instruction is used to return

}

Table 4.15: return Translation

of return bytecode.

Fast ByteCodes Translation

In KVM, some method’s bytecodes such as getfield, putstatic, invokevirtual, etc. are

replaced by fast bytecodes the first time they are executed in this method [21]. Such

bytecodes need virtual machine services such as resolveMethodReference, which calls a

set of functions in order to load the method references and parameters. To avoid that

each time a method is called, KVM uses a mechanism that replaces some bytecodes by

their corresponding fast bytecodes (e.g. invokevirtual by fastinvokevirtual) and saves

all the values needed in the cache. The next time the same method is executed, all

the references and parameters are loaded from the cache instead of calling the virtual

machine functions. A reverse process is also applied in case the cache is full and the

fast bytecodes are replaced back by their original versions. The KVM documentation

mentioned that this mechanism accelerated the execution of the virtual machine by a

factor of 5%.

Armed E-Bunny compiles also all the fast bytecodes. It uses the same KVM’s

mechanism to replace the bytecodes by their corresponding fast bytecodes and load the

method references and parameters from the cache. Indeed, at this level of compilation

of this kind of bytecodes, the system do not need to switch the execution mode in order
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// ldiv :

{
Pop Argument1 ToRegister(R1, R0);

Pop Argument2 ToRegister(R3, R2);

Call Function longdivision;

Push ReturnedValue FromRegister(R0, R1);

}

// Function longdivision(long64 arg1, long64 arg2)

{
return ll rem(arg2,arg1);

// ll rem is a function of the C compiler that manipulates the long division

}

Table 4.16: ldiv Translation Algorithm

to call the virtual machine services that are needed. A simple call from a C function

to another one is performed. The reverse mechanism is called automatically by the

interpreter whenever is needed.

C functions

In the implementation of Armed E-Bunny, we followed the strategy of calling C func-

tions to generate the complicated operations of some bytecodes instead of generating

the corresponding native code instruction by instruction. Some of these functions are

provided by the virtual machine, others are implemented in our compiler. Invoking

these methods from native mode is very simple while calling them from machine code

requires a set of pre-execution operations to be performed. Indeed, unlike other archi-

tectures, ARM’s function receives its arguments inside the registers R0-R3 and returns

its result in the register R0. For this reason, each time we needed to invoke a C func-

tion, we had to transfer all the arguments from the stack to registers and then the

result back from the registers to the stack. Although this procedure seems to be a little

bit elaborated, experiments have shown its efficiency over other strategies. Table 4.16

shows the translation algorithm of ldiv, which is an instance of bytecodes that need to

call a C function in order to complete their translations.
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//Algorith of the code introduced in the implementation of the

//invoke bytecodes

if (Native Method)

{
Pop Arguments Form Native Stack(thisMethod);

Push Arguments Into Java Stack(thisMethod);

//begin calling the KVM functions responsible of executing native methods

Call invokeNativeFunction(thisMethod);

Call TRACE METHOD EXIT(thisMethod);

//end calling the KVM functions responsible of executing native methods

Pop Returned Values Form Java Stack(thisMethod);

Push Returned Values Into Native Stack(thisMethod);

}

Table 4.17: Java Native Methods Algorithm

Java Native Methods

The Java virtual machine provides a list of Java native methods that are neither inter-

preted nor compiled. These methods are implemented directly in the C language. They

are based on the Java stack. In Armed E-bunny, the profiler deals with this kind of

methods and calls their corresponding native functions before switching to the compi-

lation mode. However, these subroutines may be called also during compilation by the

invoke bytecodes (i.e. invokevirtual, invokeinterface and invokestatic). For this reason,

a process of three steps is performed inside the implementation of these bytecodes once

a native method is detected. Table 4.17 illustrates the algorithm of this process.

First, the compiler use the Java stack to push the method’s arguments. Second,

the invokenativefunction of KVM is called in order to invoke the method. Finally,

when the execution is accomplished, the results and the arguments are popped from

the Java stack and only the results are pushed back into the native stack. Indeed, this

mechanism allows us to switch successfully between the two stacks without the need to

return back to the interpreter.

4.4.3 Garbage Collection

Our system allows native method calls and memory allocation during compilation mode.

This means that the garbage collection of KVM may be called and some references saved
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in the heap may be lost because the current algorithm of KVM garbage collection

doesn’t take into account the objet allocated in the native stack.

The current KVM garbage collection goes through three steps: mark, sweep and

compact. Based on the result of marking, the garbage sweeps the free chunks to con-

stitute consistent blocks and compact the heap, leading to a move of the object inside

it. Objects addresses are then changed and therefore, references to them are updated.

Hence, the main issue here is to enhance the marking algorithm, which scans only the

Java stack, in order to scan the native stack and mark its live referenced objects.

This is done in our compiler by adding some features to the KVM garbage collection.

Using C and ARM assembly language code, information about a thread native stack

are gathered and passed to the marking process, which passes over the given native

stack, scans it and marks all its live objects in the heap. Then, a switch to the sweep

and compact functions of the KVM is performed. At the end of this mechanism, if

necessary, the native stack references are updated through a code added to the KVM

functions responsible of references updating. Table 4.18 shows the algorithm of the

code used to mark and update the references of the native stack objects. This code

is executed on the native stack of each live thread at the moment when the garbage

collection is triggered. By doing that, the garbage collection will treat, whenever is

called, all the native marked object as if they are Java stack object references.

4.4.4 Exception Handling

Exception handling is an important feature of the Java language which has specific

semantics to be respected [21]. Our dynamic compiler handles it by generating efficient

code for the bytecode athrow which is responsible of raising an exception. Indeed,

additional ARM assembly code is also added to the functions that are called by athrow

and new issues relevant to exception propagation are introduced. During compilation

mode, the method that throws the exception is always compiled. However, the method

that catches the exception can be either interpreted or compiled. In the two situations,

a call to virtual machine functions is applied to throw the exception. Table 4.19 shows

the algorithm of athrow implementation.

If the method catching the exception is compiled, the additional code added to

the virtual machine throwexception function is used to locate the native instruction

corresponding to the bytecode handling the exception. Once the handled native code

is located, the compilation mode continues and a jump to the native instruction is

executed. Otherwise, a switch to the interpreter is applied to continue its normal

exception handling process.
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if (Compiled Method)

{
//begin marking the native stack

Load Native Stack Parameters(thisThread);

Load Method Frame(thisMethod);

Select Live Objects(thisMethod Frame);

Mark Native Stack References(Live Objects);

//end marking the native stack

Call KVM Sweep/Compact;

// begin updating the native stack references

Load Native Stack Parameters(thisThread);

Load Method Frame(thisMethod);

Select Live Objects(thisMethod Frame);

update Native Stack References(Live Objects);

//end updating the native stack references

}
else

Execute KVM Garbage Collection;

Table 4.18: Garbage Collection Algorithm
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// Athrow Implementaion

CallThrowException;

if (exceptinHandled)

begin //begin exception handling

if (isCompiled(catchingMethod)

jumpTo nativeCatchingMethod;

//Continue in compilation mode

else

jumpTo interpreterCatchingMethod;

//Switch to interpreter mode

end //end exception handling

else

InterpreterUnhandledException;

Table 4.19: Exception Handling Algorithm
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4.4.5 Threads

The technique that has been used in handling threads is inspired by [10] and is still under

enhancement. During interpretation, the KVM runs its original threads switch services,

while during compilation, additional code is generated for bytecodes causing transfer

control and contexts saving. During interpretation mode, the methods are executed on

the Java stack , while during compilation mode, the generated code is executed on the

native stack. In this context, the data structure representing the thread in the virtual

machine must hold information about both Java and native stack in order to handle

switching issues. These structures are updated each time a switch between threads

occurred. Figure 4.6 shows the thread structure during compilation. Whenever the

register holding the time-slice value reaches the zero value, a thread switch is triggered.

Actually, the application of this switch mechanism prevents a compiled thread from

going into an infinite loop and the virtual machine from hanging indefinitely.

4.5 Debugging

Armed E-Bunny is implemented in the C programming language and the ARM assembly

language. Our dynamic compiler is cross-compiled on an Intel workstation using the

GNU arm-linux-gcc and then is ported on an Embedded-Linux Handheld for execution.

For the debugging and visualization issues, we used the GNU arm-linux-gdb together

with ddd built on an Intel workstation, while the server of this debugger is installed

on the Handheld. A connection between the debugger and its server permitted us to

trace the execution of the virtual machine. Figure 4.7 shows a snapshot of a debugging

session.
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Figure 4.7: Debugging Session
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KVM 1.0.4 Armed E-Bunny Speedup

Sieve Score 40 83 2.075

Loop Score 35 79 2.26

Logic Score 39 108 2.77

String Score 129 651 5.05

Method Score 35 81 2.32

Overall Score 55 200 3.64

Table 4.20: Comparison of KVM and Armed E-Bunny Performance

Debugging using these tools was difficult due to their restricted options and the

delay exhibited during program tracing. Moreover, each time we needed to debug a new

version of the modified virtual machine, we were obliged to transfer the executable file

from the workstation to the Handheld, which also takes time. However, the execution

speedup we reached made all this worthwhile.

4.6 Experimental Results

To test the results of Armed E-Bunny in the virtual machine, we ported its ARM

executable to a Handheld and we executed it. Our results shows that Armed E-Bunny

requires additional memory space that does not exceed 119KB, including the executable

footprint overhead and the translated code storage.

The performance of Armed E-Bunny selective dynamic compiler is evaluated by

running the CaffeineMark benchmark on the original version of KVM 1.0.4 with and

without Armed E-Bunny. The results, which is illustrated in table 4.20, demonstrated

that Armed E-Bunny produces an overall speedup of 360 % over the original KVM

1.0.4. Figure 4.8 shows a snapshot and a comparison chart of our tests on an Ipaq

H3600 under Embedded-Linux.

4.7 Conclusion

This chapter described a new acceleration technology for Java embedded virtual ma-

chines target ARM 16/32-bit embedded system processors. This technology is based on

a selective dynamic compiler built inside the J2ME/CLDC (Java 2 Micro Edition for

Connected Limited Device Configuration). Our results show that our work comes up

with an efficient, lightweight and low-footprint accelerated Java virtual machine ready

to be executed on ARM embedded machines. In this chapter, we presented first the

architecture of ARM platform, then we detailed the architecture, the design as well as
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the implementation and debugging issues of Armed E-Bunny. Our experimental results

prove that a speedup of 360% over the last version of Sun’s KVM is accomplished by

Armed E-Bunny with a footprint overhead that does not exceed 119 kilobytes.



Chapter 5

Conclusion

The poor execution performance is still the major problem of Java. Enhancing the

performance of the Java virtual machine is becoming an interesting domain of research

for many developers. Consequently, many optimization techniques have been proposed.

In the beginning of this document, we presented the main components of the Java virtual

machine and we tried to highlight all the features related to a Java program execution.

Furthermore, we described in detail the Kilo virtual machine, on which we applied

our acceleration technique. Although the main advantage of the Java virtual machine

is its portability thanks to its interpreter, the poor performance of the interpretation

mechanism is a severe drawback that affects the whole Java program execution. All the

Java virtual machine acceleration techniques are discussed in chapter 3. In addition, we

described some of the existent Java virtual machines endowed with dynamic compilers.

The Java acceleration techniques are divided into two main approaches: hardware and

software acceleration. Hardware acceleration can achieve a significant speedup in term

of virtual machine performance, but the high power consumption and the cost of the

acceleration technologies leaded developers to deviate to software acceleration. Among

the software acceleration techniques, the dynamic compilation proved that it is the most

efficient, even if it makes the Java virtual machine looses part of its portability.

In this work, we were concerned with the acceleration of the Java virtual machine

embedded into resource-constrained devices. Embedded devices have limited hardware

capabilities illustrated particularly into very small memory and low battery life. Such

resource limitations stand in the way of the acceleration techniques requiring huge data

structures and energy consumption, and make many of them not applicable in the

context of embedded systems and then not relevant to accelerate the embedded Kilo

virtual machine (KVM). In fact, these limitations bind some restrictions on dynamic

compilation techniques and prevent dynamic compilers from accomplishing the same

performance results as on desktop and servers. Endowing a dynamic compiler into

an embedded virtual machine poses many implementation difficulties. The overhead
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memory and power needed by the dynamic compilers should fit with the system memory

and battery capabilities.

The architecture of ARM platform, as well as the architecture, design and implemen-

tation of Armed E-Bunny, our selective dynamic compiler targeting ARM processors,

are highlighted in chapter 4. The ARM architecture is becoming the industry leading

16/32 bit embedded system processor solution. ARM powered microprocessor are be-

ing routinely designed into a wider range of embedded systems than any other 32-bit

processor. The wide applicability of ARM architecture, that results in optimal sys-

tem solutions at the crossroads of high performance, small memory size and low power

consumption, leaded us to choose ARM processors as the target of Armed E-Bunny.

Armed E-Bunny is a dynamic compiler based on the selective dynamic compilation ap-

proach. It is built inside the last version of Sun Kilo virtual machine (KVM 1.0.4). Our

dynamic compiler uses a very lightweight profiler that allows only frequently executed

method to be compiled. All the expensive profiling techniques and the heavyweight

optimizations are avoided. A one pass compiler passes through the bytecodes of the

frequently called method and translates them into stack-based machine code which is

stored in the cache. A cache manager is also implemented in order to free memory

space for newly generated code whenever the cache is full. Our results demonstrated

that our system, Armed E-Bunny, accomplished a significant performance speedup (3.6

times better than KVM) with a footprint overhead that does not exceed 119 kilobytes.

We are very satisfied of our work and we are still motivated to accomplish more.

5.1 Future Work

Regarding our future work, we are still working on enhancing the quality of our ARM

dynamic compiler in order to accomplish better speedup. At the same time, we are try-

ing to optimize our cache management, garbage collection and threading mechanisms.

Moreover, we are planning to port MIDP/CLDC together (including Armed E-Bunny)

onto an Embedded-Linux Handhelds. By doing that, we will have an entire acceler-

ated J2ME/CLDC ready to execute any midlet (including graphical ones) on embedded

devices.
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