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Abstract 

Nowadays, approximately 90% of the minerals are extracted using surface mining 

methods. Surface mining is the process of extracting minerals located at the surface 

or near the surface. Although at least nine different surface mining methods have 

been introduced thus far, open pit and strip mining have the highest contribution in 

raw material extraction from Earth. Deposits that are being mined using these two 

methods are substantially expensive, both in the capital and operational costs re-

quiring several managerial decisions to be made for the sake of lowering propor-

tions of the total costs. Analytics has had an inevitable role in this matter. It has 

been involved in the decision-making procedures from method selection to finding 

the best location for in-pit crushers in surface mines. This chapter elaborates on how 

analytics contribute to different steps of extracting material using surface mining 

methods.  
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Introduction to Surface Mining 

Surface mining is defined as the exploitation of ore from the ground's surface with 

no exposure of operation crew to underground spaces. The surface mining operation 

is performed using nine different methods categorized under two main classes of 

mechanical methods and aqueous methods (Table 8. 1). The mechanical methods 

class responsible for 90% of total surface mining production is defined as a class of 

ore extraction that applies mechanical processes to mine material from the Earth in 

a dry environment [1].  
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Table 8. 1: Surface mining methods 

Class Method 

Mechanical Open-pit 

Strip 

Quarry 

Auger (High-wall) 

Aqueous Dredging 

In-situ 

Hydraulic 

Surface Techniques 

Evaporate 

 

From all nine surface mining methods listed in Figure 8. 1, 90% of tonnages 

mined using surface mining methods are mined by open-pit and strip mining [2]. 

Strip mining is more common in tabular near the surface flat-lying deposits like 

coals, whereas open-pit mining is more common in vertically aliened deposits. A 

literature survey shows that more than 52% of total industrial-scale mining opera-

tions in the world are open-pit metal mines [3]. Based on the importance of open-

pit mining across the different surface mining methods, this chapter will focus on 

elaborating the application of advanced analytics in different planning and design 

stages of the open-pit mining method. 

As defined in [3], open-pit mining is the process of mining near-surface deposits 

using horizontal benches. It has two main differences comparing to strip mining and 

quarrying. In open-pit mining, the overburden must be moved out of the pit rim and 

been disposed in an external disposal area, whereas in the strip mining, the overbur-

den can be disposed inside the mined area. Compared to the quarrying, the open-pit 

mining method selectively mines the ore, whereas, in quarrying, an aggregate or a 

dimensional stone is produced. 

All open-pit mines have at least three main infrastructures: benches, haul road 

networks and dumps. Material is excavated on a series of layers with a uniform 

thickness called a bench [4]. AS depicted in Figure 8. 1, an open-pit consists of three 

types of benches. Active (working) benches are benches where shovels are mining 

material. Inactive benches where no production activity is taking place at the mo-

ment but has the potential to be activated in the future, and catch benches where 

material falling from the top benches are caught and stopped from falling onto the 

active areas. 

Haul road networks are a series of haul roads connecting different loading points 

to different dumping points and providing connections to other service areas inside 

and outside of the open-pit. Haul roads in open-pit mines are constructed by either 

cutting or filling the floor of mining benches in deep hard rock mines and paving 
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the pit floor in shallow soft rock mines. A typical haul road in an open-pit mines 

consists of three major components: travel lane, safety berm, and drainage ditch. As 

a rule of thumb, road width for two-way traffic, which is the most common road in 

open-pit mines, must be greater than four times the largest truck's width [4]. 

The third major infrastructure of an open-pit mine is its waste dump. The waste 

dump refers to the dump of mined material with no to little economic value at the 

time of its placement [5].  

The mining production fleet works within the three above-mentioned infrastruc-

tures to produce economic value for shareholders. This brief introduction being said, 

the following subsections in this chapter present the application of advanced ana-

lytics in each stage of planning, design, and production from surface mines and, 

more specifically, open-pit mining methods. 

 

 
Figure 8. 1: Open-pit Geometry [5]. 

Open-Pit Planning and Design 

Before starting extraction of raw material from the ground, the business needs a 

step-by-step actionable plan that provides a detailed guideline for the production to 

maximize the net present value of the deposit. The open-pit planning and design is 

a decision-making process that provides a detailed, actionable plan for profitably 

producing the raw material from the area of interest [6]. 

Open-pit planning and design are generally outlined for three different time 

frames. Short-range plans are providing information for a time frame between a 

shift to a week. Medium-range plans range between a week to a year of operation, 

and the long-range plans provide production schedule and design for a year of op-

eration to the life of mine. In this chapter, our focus is on long-range open-pit plan-

ning and design. 

There are seven main steps in generating the long-range mine plan for an open-

pit mine. Initially, a resource model is needed to be prepared for the area of interest. 
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Then, in the second step of the open-pit planning and design, we apply a pit optimi-

zation algorithm to generate a set of pit shells. After laying out the set of possible 

pit shells, the planner needs to choose the final pit. The final pit is the pit in the set 

of possible pit shells that maximizes the mine's net present value. When the final pit 

is selected, we need to establish the desired production rate and generate a plan for 

material production within the final pit. In the last two steps of the long-range open-

pit planning and design, the number of desired pushbacks and their basic designs 

are chosen, and finally, the production schedule is optimized. A detailed step by 

step open-pit mine planning and design can be found in [4]. 

Optimization is the branch of advanced analytics that is of the highest demand 

in the open-pit mining planning and design stage. Determination of ultimate pit limit 

and production schedulings are two main steps in the open pit mine planning and 

design where optimization algorithms are required to make optimal decisions. 

The final pit limit is defined as the extent of the mineable reserve and the waste 

material that is economically and technically viable and safe to be mined for ex-

tracting the ore [7]. The optimum final pit limit is determined by maximizing net 

present value (NPV) from mining a set of blocks concerning slope constraints. In 

equation (8.1) and equation (8.2), we present the formula for calculating the block 

economic value for each block in the block model and the basic formula for NPV 

calculation. 

 𝐵𝐸𝑉𝑖𝑗𝑘 =  𝑂𝑟𝑒𝑖𝑗𝑘 × 𝑔𝑖𝑗𝑘 × 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

× (𝑃𝑟𝑖𝑐𝑒 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑒𝑙𝑙𝑖𝑛𝑔)
−  𝑂𝑟𝑒𝑖𝑗𝑘 × 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

− 𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑐𝑘𝑠 𝑖𝑗𝑘 × 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑀𝑖𝑛𝑖𝑛𝑔 

(8.1) 

 

 𝑀𝑎𝑥 𝑃 =  ∑ 𝐵𝐸𝑉𝑖𝑗𝑘

𝑖𝑗𝑘

 (8.2) 

Subject to pit slope constraints. 

Where 𝐵𝐸𝑉𝑖𝑗𝑘 is the block economic value of the block located in the orebody 

with index 𝑖, 𝑗, and 𝑘. 𝑂𝑟𝑒𝑖𝑗𝑘 is the content of ore in the same block with an average 

grade of 𝑔𝑖𝑗𝑘.  

Two major steps must be taken. At first, the block economic value (BEV) must 

be calculated using stochastic parameters in nature, such as tonnage of ore, grade, 

recovery, price, cost, etc. Then in the second step, the pit limit must be determined 

using a set of uncertain BEVs inputs. Analytics is to the rescue here. It all started 

with Dowd's risk-based algorithm [8]. In the risked base mine planning algorithm 

developed by Dowd (Figure 8. 2), all the input parameters with the stochastic be-

havior are imported as the distributions fitted on the data. In each step of the algo-

rithm, it randomly samples from the distributions instead of using a deterministic 

value for each input parameter. 
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Figure 8. 2: Risked based mine planning [8, 9] 

After the risked base algorithm developed by Dowd, several other algorithms 

have been developed by researchers to schedule open-pit production incorporating 

uncertainties in the procedure. Godoy and Dimitrakopoulos [10] proposed a five-

step algorithm that provides an open-pit mine production schedule under uncertain 

conditions. Osanloo and Gholamnejad [9] brief the proposed five steps as follows: 

1. Generate a series of simulated ore body; 

2. Design final pit and push backs for the simulated ore body; 

3. Find the optimal production rate for the life of mine; 

4. Generate a production plan for each simulated ore body; 

5. Combine obtained mining sequences to a single production schedule. 

 

To accommodate grade uncertainty in open-pit mine production planning, Ram-

azan and Dimitrakopoulos [11, 12] proposed another algorithm. Here, after receiv-

ing the simulated orebody, the MIP generates a production scheduling pattern. This 

pattern is used as a guideline to calculate the probability of mining each block in a 
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given period. Then any block with a chance between zero and one is considered in 

a new optimization model with the objective function presented in equation (8.3). 

 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑣𝑛

𝑡 × 𝑥𝑛
𝑡

𝑁

𝑛=1

𝑇

𝑡=1

 (8.3) 

 

Where 𝑇 and 𝑁 are the total number of periods and blocks in the model. 𝑣𝑛
𝑡  is the 

NPV that will be generated by mining block 𝑛 in period 𝑡. 𝑥𝑛
𝑡  is one if the block 𝑛 

is scheduled to be mined in period 𝑡 and zero otherwise.  

The stochastic open-pit production schedule model is, however, limited with the 

following constraints: 

The material sent to the plant must meet the upper and lower bounds for the 

average grades, as presented in equation (8.4) and equation (8.5). 

 
∑(𝑔𝑛 − 𝐺𝑚𝑖𝑛) ×  𝑂𝑛 × 𝑥𝑛

𝑡

𝑁

𝑛=1

≥ 0 (8.4) 

 

 
∑(𝑔𝑛 − 𝐺𝑚𝑎𝑥) ×  𝑂𝑛 × 𝑥𝑛

𝑡

𝑁

𝑛=1

≤ 0 (8.5) 

 

Where 𝑔𝑛 is the grade of material in block 𝑛, 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 are lower and upper 

bounds of the average feed grade to the processing plant, and 𝑂𝑛 is the tonnage of 

ore to be mined from block 𝑛. 

 

The plant also has a capacity constraint that must be followed by the quantity of 

material being sent to it in each period. Equation (8.6) and equation (8.7) present an 

example of how the plant capacity is constrained in stochastic production planning. 

 

 
∑ 𝑂𝑛 × 𝑥𝑛

𝑡

𝑁

𝑛=1

≥  𝑃𝐶𝑚𝑖𝑛 (8.6) 

   

 
∑ 𝑂𝑛 × 𝑥𝑛

𝑡

𝑁

𝑛=1

≤  𝑃𝐶𝑚𝑎𝑥  (8.7) 

 

Where 𝑃𝐶𝑚𝑖𝑛 and 𝑃𝐶𝑚𝑎𝑥  are the minimum production requirement and maxi-

mum production capacity of the plant.  

 

The mining operation has its limitations. We cannot produce more than the avail-

able equipment capacity, and we need to maintain waste material production 

throughout the periods. These are met using equation (8.8) and equation (8.9). 
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∑(𝑂𝑛 +  𝑊𝑛) × 𝑥𝑛

𝑡

𝑁

𝑛=1

≥  𝑀𝐶𝑚𝑖𝑛 (8.8) 

   

 
∑(𝑂𝑛 +  𝑊𝑛) × 𝑥𝑛

𝑡

𝑁

𝑛=1

≤  𝑀𝐶𝑚𝑎𝑥  (8.9) 

Where 𝑊𝑛 is the waste tonnage scheduled to be mined from block 𝑛. 

 

We first need to mine a series of blocks located above the block based on slope 

requirements. The constraint provided in equation (8.10) is used to ensure that all 

blocks situated above the current block are mined ahead of the current block or at 

least at the same period. 

 𝑌𝑥𝑘
𝑡 − ∑ ∑ 𝑥𝑦

𝑟

𝑡

𝑟=1

𝑌

𝑦=1

≤ 0, 𝑡 = 1, 2, 3, … , 𝑇 (8.10) 

Where 𝑌 is the total number of blocks to be mined before mining a given block. 

𝑘 is the index of the block to be mined in period 𝑡. 𝑦 is the index for 𝑌 blocks to be 

excavated before the given block.  

The optimization model is also a constraint to mine all the blocks in reserve only 

once. Equation (8.11) makes sure that all the blocks in reserve are mined only once. 

 ∑ 𝑥𝑛
𝑡

𝑇

𝑡=1

= 1 (8.11) 

 

 

We use the scheduling model presented above on all the ore body realizations. 

By doing that, we can calculate the probability of each block being mined in a given 

period. The probability calculation generates three categories of blocks: blocks with 

zero chance to be mined in a given period meaning that they are not mined in the 

period of concern. Blocks with probability equal to one indicating that the entire 

block must be mined in the given period. And the third category is the category of 

blocks with the probability of being mined in a given period between zero and one. 

Blocks in the third category are considered in a second optimization model with an 

objective function presented in equation (8.12). 

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ [∑ 𝑐𝑛
𝑡 × 𝑥𝑛

𝑡

𝑁

𝑛=1

− ∑ 𝑤 × 𝑑𝑚
𝑡

𝑀

𝑚=1

]

𝑇

𝑡=1

 (8.12) 

 

Where 𝑀 is the number of blocks in the smoothness constraints, as shown in 

Figure 8. 3 𝑐𝑛
𝑡  is calculated as (𝑣𝑛

𝑡 × 𝑝𝑛
𝑡 ) where 𝑝𝑛

𝑡  is probability of mining block 𝑛 

in period 𝑡. 𝑤 is cost of unit deviation caused by smoothing the schedule and 𝑑𝑚
𝑡  is 

the deviation from the smooth pattern when mining block 𝑚. 
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The model is constrained by the probability of blocks having the desired grade, 

equipment access, and mobility listed in equation (8.13) to (8.15). 

 

 
∑(𝑃𝑛 − 100)  ×  𝑂𝑛 × 𝑥𝑛

𝑡 + 𝑌1
𝑡 × 𝑇𝑂 = 0

𝑁

𝑛=1

 (8.13) 

 

 
− ∑ 𝐾1𝑗 × 𝑂𝑗 × 𝑥𝑗

𝑡 + 𝐾2𝑖 × 𝑂𝑇𝑖
𝑡 − 𝑌2𝑖

𝑡  ≤ 0

𝑛𝑏1

𝑗=1

 (8.14) 

 

 − ∑ 𝐾1𝑗 × 𝑂𝑗 × 𝑥𝑗
𝑡 + 𝐾2𝑖 × 𝑂𝑇𝑖

𝑡 − 𝑌3𝑖
𝑡  ≤ 0

𝑛𝑏2

𝑗=1

 (8.15) 

 

Where 𝑇 and 𝑁 are the total number of periods and blocks in the model. 𝑃𝑖  is the 

probability of block 𝑖 having a grade within the desired interval. 𝑂𝑇𝑖
𝑡 is the tonnage 

of ore scheduled to be mined from block 𝑖 in period 𝑡. 𝑇𝑂 is the total tonnage of ore 

to be mined in the period of concern. 𝑌1
𝑡 is a deviation from desired probability in 

period 𝑡. 𝐾1𝑗 = 1 𝑇𝑂𝑗⁄  , 𝐾2𝑖 = 𝑛𝑏1 𝑇𝑂𝑖⁄  for the inner window, and 𝐾2𝑖 =

𝑛𝑏2 𝑇𝑂𝑖⁄  for the outer window is the coefficient to convert ore tonnage to percent-

age. 𝑇𝑂𝑗  is total ore available in mining block 𝑗. 𝑛𝑏1 and 𝑛𝑏2 are the total number 

of blocks within the inner and outer windows presented in Figure 8. 3. 𝑌2𝑖
𝑡  and 𝑌3𝑖

𝑡  

are deviations from smoothness of the inner and outer windows, respectively.  

 

Figure 8. 3: Inner and outer windows for block i 

Based on the same concept, the model can be solved using Genetic Algorithm 

(GA) [13]. The GA assumes 𝑝𝑛
𝑡  in above model as chromosome for block 𝑛 to be 



9 

mined in period 𝑡 then estimates the 𝑝𝑛
𝑡  randomly in each stage of evolution using 

its mutation or crossover operation.  

Mechanical Extraction, Loading, and Hauling 

As presented in Table 8. 1, the five most common mechanical excavation methods 

are open-pit, stripping, quarry, and auger. These five mechanical methods account 

for 90% of the total surface mining productions all around the world. After deciding 

on using the mechanical surface mining method to excavate material from the de-

posit, step one is to choose between the above-mentioned four mechanical methods. 

Based on Hartman [1], selecting the proper method depends on four major factors, 

including the shape of the deposit, its depth, thickness, and size, as presented in 

Table 8. 2. 

 
Table 8. 2: Mechanical extraction method selection factors 

Mining Method Shape of de-

posit 

Depth of de-

posit 

Thickness of 

deposit 

Size of deposit 

Open-pit Any shape Any depth Thick Large  

Stripping Tabular Low depth Thin Large  

Quarrying Tabular or Mas-

sive 

Any depth Thick Moderate size 

Augering Tabular Flat Thin Remnant  

 

Other mining method selection strategies exist in the literature. The mining 

method selection strategy developed by Nicholas [14] and its modified version 

known as UBC mining method selection [15] are two commonly used strategies. 

These two strategies also use qualitative ranking systems to select the best mining 

method for the deposit in hand. 

 

The above-mentioned mining method selection techniques are manual methods. 

However, to make more precise decisions on the mining methods, one can employ 

a combination of different analytics techniques. Two of the main analytics tech-

niques to select between several alternatives are the Analytic Hierarchy Process 

(AHP) and the Analytic Network Process (ANP). Thomas Saaty developed the AHP 

and ANP techniques at the University of Pittsburgh. Hierarchies of feedback net-

works are generated by AHP or ANP model developers considering criteria to de-

rive ratio scales. These scales are then used to select the best alternative among the 

available choices. In a nutshell, AHP and ANP work based on developing priorities 

for available options and criteria used to judge the available choices [16]. An AHP 

model consists of three primary levels: goal, criteria, and alternative (Figure 8. 4). 
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Figure 8. 4: AHP Diagram [16] 

As depicted by Figure 8. 4, the first concept of the AHP is to structure the prob-

lem at hand as a hierarchy of goals, criteria, and alternatives. The second concept 

of the AHP is to perform a pair-wise comparison of elements at each hierarchy step. 

The third concept covering by AHP is to synthesize judgment on each piece over 

different levels of hierarchy. To solve an AHP structured problem, we first need to 

determine each criterion's importance compared to other criteria. Then we need to 

calculate the relative importance of each alternative to each criterion. And then, 

calculate the overall priority weight of each of the choices. 

Following, we provide (Figure 8. 5) an example of selecting a mining method 

using the AHP technique based on [17].  
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Figure 8. 5: Flowchart for selecting mining method using AHP technique [17]. 

 

A sample questionary to send to the experts to quantify critical criteria is pro-

vided in Table 8. 3. Based on the deposit you have in hand to select a mining method 

for, you prepare a list of important factors affecting the method selection procedure. 

Then, prepare a questionary like the one presented in Table 8. 3. Distribute the ques-

tionary among the area experts and ask them to fill it based on the information of 

your deposit. It is worth noting that Table 8. 3 is a simple example, and the ques-

tionary list can vary from one deposit to the other one. 

 
Table 8. 3: A simple example of a questionary for assessing the importance of each fac-

tor 

Criterion Importance 

None:1 Minor:2 Substantial:3 Fundamental:4 Highest:5 

Shape of deposit      

Depth of deposit      

Thickness of deposit      

Size of deposit      
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If you have listed many factors, using the questionary, you decide on which es-

sential factors must be included in the method selection procedure as a criterion. 

After finding the most critical factors in the method selection, we construct the hi-

erarchy as presented in Figure 8. 6. 

 

 
Figure 8. 6: AHP model structure for surface mining method selection 

Now we need to determine the relative importance of criteria with respect to the 

goal. For that, we use the pair-wise comparison matrix. To create the pair-wise com-

parison matrix, we use the so-called fundamental scale provided in Table 8. 4. 

 
Table 8. 4: the fundamental scale ore the scale of relative importance table to be used for 

filling up the pair-wise comparison table [16] 

Definition Intensity of importance 

Equal 1 

Weak 2 

Moderate 3 

Moderate plus 4 

Strong 5 

Strong plus 6 

Very strong 7 

Very, very strong 8 

Extreme 9 

Inverse comparison 1/2, 1/3, 1/4, …, 1/9 

 

The pair-wise comparison matrix is an n-by-n matrix where n is the number of 

criteria associated with our problem. For our specific example, the pair-wise com-

parison matrix is constructed as presented in Table 8. 5. 

 
Table 8. 5: Pair-wise comparison matrix of the surface mining method selection problem. 

 Shape Depth Thickness Size 

Shape 1 5 4 7 
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Depth 1/5 1 1/2 3 

Thickness 1/4 2 1 3 

Size 1/7 1/3 1/3 1 

Sum 1.59 8.33 5.83 14 

 

The value in each cell of the pair-wise matrix presented in Table 8. 5 depends on 

the decision-maker. However, one criterion compared to itself has equal im-

portance. Thus, the diagonal values of the pair-wise comparison matrix are always 

one. Another important note regarding the pair-wise comparison matrix is that if the 

importance of criterion A to criterion B is equal to x, then the importance of criterion 

B to criterion A is 1/x. We then calculate each column's sum and insert it in the last 

row of the pair-wise matrix. 

In the next step, we create the normalized pair-wise comparison matrix by divid-

ing each value in a column to the same column's cumulative value as depicted in 

Table 8. 6. 

 
Table 8. 6: Normalized pair-wise comparison matrix 

 Shape Depth Thickness Size 

Shape 1/1.59=0.6289 5/8.33=0.6002 4/7=0.6861 7/14=0.5000 

Depth 0.2/1.59=0.1258 1/8.33=0.1200 0.5/7=0.0858 3/14=0.2143 

Thickness 0.25/1.59=0.1572 2/8.33=0.2401 1/7=0.1715 3/14=0.2143 

Size 0.14/1.59=0.0898 0.33/8.33=0.0400 0.33/7=0.0572 1/14=0.0714 

Sum 1.59 8.33 5.83 14 

 

After normalizing the importance, we calculate each criterion's weight by aver-

aging values in each row of the normalized pair-wise comparison table (Table 8. 6). 

Each criterion's weight is now calculated by averaging each row's values (Table 8. 

7). 

 
Table 8. 7: Weight of criteria 

 Shape Depth Thickness Size Criteria weight 

Shape 0.6289 0.6002 0.6861 0.5000 0.6038 

Depth 0.1258 0.1200 0.0858 0.2143 0.1365 

Thickness 0.1572 0.2401 0.1715 0.2143 0.1958 

Size 0.0898 0.0400 0.0572 0.0714 0.0646 

 

 

Now we need to calculate the consistency of the criteria to check if the calculated 

values are correct. To calculate the model's consistency, we use the pair-wise com-

parison matrix values in Table 8. 5, which are not normalized. Then, we multiply 

each value in a column with the criterion weight of that column. In the next step, 

we calculate the weighted sum value for each criterion by summing all the values 
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in each row. By dividing the weighted sum value by the criteria weight and averag-

ing over all the criteria, we find 𝜆𝑚𝑎𝑥 . 

 

Table 8. 8: Preparation for calculating 𝜆𝑚𝑎𝑥. 

 Shape Depth Thickness Size Weighted 

sum value 

Weighted sum /Cri-

teria weight 

Shape 1×0.60 5×0.14 4×0.20 7×0.06 2.52 4.18 

Depth 0.2×0.60 1×0.14 0.5×0.20 3×0.06 0.55 4.02 

Thickness 0.25×0.60 2×0.14 1×0.20 3×0.06 0.81 4.16 

Size 0.14×0.60 0.33×0.14 0.33×0.20 1×0.06 0.26 4.05 

 

𝜆𝑚𝑎𝑥 =
4.1762 + 4.0225 + 4.1553 + 4.0488

4
= 4.1007 

Now that we have 𝜆𝑚𝑎𝑥  value, we can calculate the consistency index using 

equation (8.16). 

 

 𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (8.16) 

Where 𝑛 is the number of criteria and 𝐶𝐼 is the consistency index. In our exam-

ple, 𝐶𝐼= (4.1007-4)/(4-1) = 0.03358. We now can calculate the consistency ratio 

using equation (8.17). 

 𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 (8.17) 

Where 𝐶𝑅 is consistency ratio, and 𝑅𝐼 is the random index, which is the con-

sistency index of the randomly generated pair-wise matrix of the same size. Saaty 

[18] calculated 𝑅𝐼 for one to ten criteria that is presented in Table 8. 9. 

 
Table 8. 9: RI values for up to ten criteria in AHP [18]. 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

Based on Table 8. 9 consistency ratio in our example is: 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
=  

0.03358

0.90
= 0.0373 

A pair-wise matrix is consistent if it's 𝐶𝑅 < 0.10. Based on that, the pair-wise 

matrix in our example is consistent.  

Now that we are sure about the consistency of the pair-wise comparison matrix 

for the selected criteria, we follow the same steps but this time for the alternative 

methods and develop pair-wise comparison matrices for them based on each crite-

rion to calculate the weights. Table 8. 10 presents the pair-wise comparison matrices 

for our example based on each criterion. In Table 8. 10, O, S, Q, and A stand for 

Open-pit, Stripping, Quarrying, and Augering, respectively.  
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Table 8. 10: generating pair-wise matrices for solution alternatives with respect to dif-

ferent criteria 

Shape O S Q A Weight Weighted 

sum 

Weighted 

sum/weight 

CI&CR 

O         

S         

Q         

A         

Depth O S Q A Weight Weighted 

sum 

Weighted 

sum/weight 

CI&CR 

O         

S         

Q         

A         

Thick-

ness 

O S Q A Weight Weighted 

sum 

Weighted 

sum/weight 

CI&CR 

O         

S         

Q         

A         

Size O S Q A Weight Weighted 

sum 

Weighted 

sum/weight 

CI&CR 

O         

S         

Q         

A         

 

In the final step of the AHP for surface mining method selection, using equation 

(8.18), we determine the best surface mining method to mine the deposit. 

 𝑀𝑎𝑥 {∑ 𝐶𝑊𝑖 × 𝑀𝑊𝑗     |  𝑗 ∈ {1, … , 𝑀}

𝑁

𝑖=1

} (8.18) 

Where 𝐶𝑊𝑖 is criterion weight for criterion 𝑖 from 𝑁 criteria and 𝑀𝑊𝑗 is the 𝑗 

alternative weight from 𝑀 alternative solutions available. The equation (8.18) 

shows the solution alternative, which obtained the highest rank among all the meth-

ods. 
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Selection and Sizing of Excavating, Loading, and Hauling 

Equipment 

In open-pit mining, equipment selection and sizing are critical problems to be 

solved by the mining engineers. This problem is divided into two main subproblems 

of loading equipment and transferring equipment. For the loading equipment, we 

need to follow three steps: 1) finding the bucket capacity, 2) determining the ma-

chine's geometry, and 3) finding the best match from the machines that are currently 

available in the market [19].  

The bucket size is determined using equation (8.19) after finding the mine's re-

quired production rate using the long-term plan. 

 

 𝐵𝐶 =  (𝑃𝑟 × 𝐶𝑡) (𝐹𝑓 × 𝑀𝑎 × 𝐸𝑓 × 3600)⁄  (8.19) 

 

In equation (8.19), 𝐵𝐶 is the bucket capacity for the loading equipment required 

to meet the production plan, 𝑃𝑟 is the rate of the production based on the production 

plan, 𝐶𝑡 is the nominal cycle time of the desired equipment, 𝐹𝑓 is the bucket fill 

factor, 𝑀𝑎 is the mechanical availability of the equipment, and 𝐸𝑓 is the operational 

efficiency. In the next step, using multiple iterations, the loader geometry is deter-

mined based on the benches' geometry in the designed pit. Based on the loader's 

selected geometry and its bucket capacity, the decision maker compares available 

options from different OEMs and makes decisions on the make and model of the 

loading equipment. Analytics comes to operation in this stage with the AHP method 

to select the best loader. The steps detailed in the previous section are required to 

be taken to make the best decision. Then, based on the production rate and stripping 

ratio size of the loader fleet is determined. 

In the next step of the equipment selection and sizing for open-pit mines, it is 

required to determine the size and number of trucks needed to transport material 

from the pit to the destinations. Mining engineers typically select trucks with 

enough capacity to be loaded with three to five passes by the mine's available load-

ers. Thus, based on the size of the loaders in the mine's production fleet, using the 

AHP method, the decision-maker decides on the mark and model of the required 

trucks among those that can be filled by the selected loaders in three to five passes. 

Again, the decision-maker follows the previous section's steps to select the mine's 

best truck types. A typical example of how different types of trucks match different 

load types is presented in Table 8. 11. 

 
Table 8. 11: Number of passes required to load a truck with a loader [19] 

Truck size 

(t) 

Loader bucket size (m3) 

15 20 25 35 45 

136 5 4 3   

181 6 5-6 4 3  
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217  6 5 3-4  

290   6 4-5 3-4 

360    6 4-5 

  

Based on the selected loaders' bucket capacity and a table of truck options, as shown 

in Table 8. 11, three sets of truck fleets are chosen. A fleet of small trucks that can 

be loaded by five to six passes using the selected loaders. A fleet of large trucks that 

can be loaded by three to four passes using the selected loaders. And a fleet of 

trucks, including both small and large trucks. After that, we need to calculate the 

number of trucks required in the fleet to meet the scheduled production. 

 

The common practice in mining is determining the number of trucks in the fleet 

using a deterministic formula presented by Burt and Caccetta [20] based on the 

match factor definition. The match factor (MF) is defined as presented in equation 

(8.20) for a homogeneous truck fleet and equation (8.21) for a heterogeneous truck 

fleet: 

 

 𝑀𝐹 =  
𝑡𝑟𝑢𝑐𝑘𝑠

𝑙𝑜𝑎𝑑𝑒𝑟𝑠
×

𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒

𝑡𝑟𝑢𝑐𝑘 𝑐𝑦𝑐𝑙𝑒
 (8.20) 

 

 
𝑀𝐹 =  

1

(∑
𝑙𝑜𝑎𝑑𝑒𝑟𝑠𝑗

∑ 𝑡𝑟𝑢𝑐𝑘𝑠𝑖 × (𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒)𝑖,𝑗𝑖
𝑗 ) × 𝑡𝑟𝑢𝑐𝑘 𝑐𝑦𝑐𝑙𝑒

 
(8.21) 

 

Where 𝑖 and 𝑗 are the index of truck types and loader types, respectively. Based on 

the match factor as presented in equation (8.20) and (8.21), the mining production 

system falls into one of the three domains of the under-truck system (MF<1), bal-

anced system (MF=1), and over-truck system (MF>1). The number of trucks of each 

type in the fleet is determined to keep the match factor of the production system at 

one. 

Although the required number of the trucks in the fleet is determined using the MF 

method, the method has some drawbacks, one of which is that it does not account 

for the technical uncertainties in its calculations. Analytics comes to action here, 

and using descriptive analytics, simulation, and optimization help the mining indus-

try to more precisely determine the number of trucks required to meet the produc-

tion targets. It is worth noting that the analytics approach to determine the size of 

the truck fleet uses the MF method as its starting point [21]. 

At the first step of using analytics to determine the optimal truck fleet size, under-

standing the surface mine's material handling system is essential. The material han-

dling system consists of the mining operation, processing, and decision-making sys-

tems, which in most cases are the fleet management systems. The analytic system 

that needs to be developed to solve the truck fleet sizing problem must include these 

components (Figure 8. 7).  
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Figure 8. 7: Schematic of the analytics system to solve truck fleet sizing problem in sur-

face mines [22]. 

As presented in Figure 8. 7, a simulation and optimization framework must be 

developed for the mine where the simulation part of the framework mimics the op-

erations and the optimization part of the framework mimics decision-making tools. 

To develop the simulation and optimization framework, one requires three major 

software: a discrete event simulation software, an optimization software, and Mi-

crosoft Excel. These three software are needed to talk with each other, as presented 

in Figure 8. 8. 
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Figure 8. 8: A general layout of the simulation and optimization software to be used in the 

analytics system for determining truck fleet size in surface mines [23]. 

After selecting the proper software and setting up the framework in software, we 

need to prepare the required inputs. Thus, in a new mine, we collect historical data 

for our selected truck type and loader type from another mine. In the case of a cur-

rently active mine, we collect historical data from our mining operation. Using data 

analysis methods, we fit different distributions on the data and find the best distri-

bution using testing methods such as Kolmogorov-Smirnov (KS).  

A list of input parameters must be collected, preprocessed, analyzed and fitted 

with the proper distribution. After finding the fitted distribution for each input pa-

rameter, we store them in an excel file that is readable from the simulation software. 

The input parameters depend on how we develop our simulation and optimization 

framework and the level of detail we consider in the model development. However, 

for a truck and shovel surface mining operation, the major inputs are components 

of shovel loading time and truck cycle time, such as idling in the queue at the shovel, 

velocity, etc. 

After setting up the input Excel file with the required input parameters stored in 

it, we develop the simulation model and connect it to an external optimization soft-

ware such as IBM CPLEX [24]. In the optimization software, we need to set up all 

the decision-making models that the mine is or will be using in its operation. One 

of the essential decision-making models to be provided here is the fleet management 

system in use in the operation. Ali Moradi-Afrapoli, in [23], presents a comprehen-

sive explanation of how to develop the framework.  
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The framework is ready to determine the optimal number of trucks required to 

meet the production schedule by connecting the simulation model to the optimiza-

tion models and the data file. At this stage, one should define production scenarios 

based on the number of trucks in the fleet to test them and find the best possible 

combination of trucks and loaders fleet. Three sets of scenarios must be defined: a 

set of scenarios for the fleet of only small trucks, a set of scenarios for the fleet of 

large trucks, and scenarios for the fleet of small and large trucks. Here, to develop 

scenarios, one can start from a random number of trucks in the fleet add or deduct 

the number of trucks. This will increase the run time for the procedure. Thus, it is 

promising to start with the number of trucks determined by each category's MF 

method. Then develop ten scenarios in the under-truck system and ten scenarios in 

the over-truck system as presented in Table 8. 12. 

 
Table 8. 12: Scenarios to be created for determining the optimal truck fleet size in sur-

face mines. 

Fleet type Under truck balanced Over truck 

Small trucks 𝑇𝑠 − 10, … , 𝑇𝑠 − 1 𝑇𝑠 𝑇𝑠 + 1, … , 𝑇𝑠 + 10 

Large trucks 𝑇𝑙 − 10, … , 𝑇𝑙 − 1 𝑇𝑙  𝑇𝑙 + 1, … , 𝑇𝑙 + 10 

Mixed fleet 𝑇𝑚 − 10, … , 𝑇𝑚 − 1 𝑇𝑚 𝑇𝑚 + 1, … , 𝑇𝑚 + 10 

 

In Table 8. 12, 𝑇𝑠, 𝑇𝑙 , and 𝑇𝑚 are the number of trucks required to meet the pro-

duction in the small, large, and mixed truck fleet, respectively. These numbers are 

calculated using the MF method. Following the above-mentioned method, 63 sce-

narios are developed. The best fleet is then chosen by comparing their impacts on 

the key performance indicators of the operation, such as daily and hourly produc-

tion, grade quality and quantity, etc. 

In-Pit Crushing 

The first in-pit crushing and conveying (IPCC) system was installed in a limestone 

quarry mine located east of Hanover in Germany [25]. Since then, three different 

IPCC systems have gained popularity in surface mining sectors: fixed, mobile, and 

semi-mobile crushers. The main reason for transferring the surface mining opera-

tions from the conventional truck and shovel operations to IPCC is that the mine 

gets deeper and the haul roads get longer, so transportation costs using conventional 

trucks get higher. This makes the implementation of IPCC economically viable. 

According to Utley [25], the major drawbacks of the IPCC systems are their short-

term movement inflexibility, the dependency of their production to their loading 

process, inflexibility when different blending is required, etc. However, Osanloo 

and Paricheh [26] believe that the most reliable way to overcome trucking difficul-
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ties in surface mines is to implement IPCC. They also provide data on IPCC's eco-

nomic advantage over conventional truck and shovel systems showing that by im-

plementing IPCC in 25-year mine life, the system will produce 200% higher NPV 

than the truck and shovel system. The IPCC is also environmentally friendlier than 

a conventional truck and shovel mining systems as its total energy consumption and 

greenhouse gas emission are 20% and 5% less than the truck and shovel systems 

[26]. 

Accepting all the advantages of IPCC implementation in surface mines, it has a 

significant impact on the mine planning, which is not handleable using conventional 

mine planning tools as a significant change occurs by adding IPCC to the problem. 

Thus, new optimization models are needed to incorporate IPCC impacts into the 

mine plan. Conventional long-term production plans provide the time of mining of 

each block in the block model so that the mine's net present value is maximized. 

However, by adding IPCC to the equation, the long-term plans must provide the 

location of IPCC and time for the relocation of it along with the production plan. 

Paricheh et al. [27] proposed a two-step optimization model to incorporate IPCC in 

the long-term production plan by optimizing its location and finding the best relo-

cation time. Their two-step model is presented here. 

 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ ∑ ∑ 𝐹𝑘𝑖𝑗𝑥𝑘𝑖𝑗

𝑚𝑘+1

𝑖=1

+ ∑ 𝐶𝑘𝑦𝑘

𝑟

𝑘=𝑏

𝑝

𝑗=1

𝑟

𝑘=1

 (8.22) 

 

Subject to: 

 𝑦𝑘 =
1

2
 ∑ 𝑤𝑘𝑗

𝑝

𝑗=1

         ∀ 𝑘 (8.23) 

 

 𝑧𝑘𝑗 − 𝑧(𝑘−1)𝑗 ≤ 𝑤𝑘𝑗          ∀ 𝑗, 𝑘 (8.24) 

 

 𝑧(𝑘−1)𝑗 − 𝑧𝑘𝑗 ≤ 𝑤𝑘𝑗          ∀ 𝑗, 𝑘 (8.25) 

 

  ∑ 𝑧𝑘𝑗

𝑝

𝑗=1

= 𝑃      ∀ 𝑘 (8.26) 

 

  ∑ 𝑥𝑘𝑖𝑗

𝑝

𝑗=1

= 1      ∀ 𝑖, 𝑘 (8.27) 

 

 𝑥𝑘𝑖𝑗 − 𝑧𝑘𝑗 ≤ 𝑤𝑘𝑗          ∀ 𝑖, 𝑗, 𝑘 (8.28) 
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𝑥𝑘𝑖𝑗 =  {

1
 
0

 
 
 

 
 
 

 
 
 

 
 
 

𝐼𝑓 𝑓𝑎𝑐𝑒 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              
 

 

(8.29) 

 

 𝑧𝑘𝑗 =  {
1
 
0

 
 
 

 
 
 

 
 
 

 
 
 

𝐼𝑓 𝑐𝑟𝑢𝑠ℎ𝑒𝑟 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                     
 (8.30) 

 

 𝑦𝑘 =  {
1
 
0

 
 
 

 
 
 

 
 
 

 
 
 

𝐼𝑓 𝑐𝑟𝑢𝑠ℎ𝑒𝑟 𝑖𝑠 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘                  
 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                    
 (8.31) 

 

Where 𝑖, 𝑗, and 𝑘 are indices over the number of mining faces to be mined in a 

certain period, candidate in-pit crusher locations, and extraction periods, respec-

tively. And 𝑟, 𝑝, and 𝑚𝑘 are the total number of periods, the total number of candi-

date locations for in-pit crusher, and the total number of mining faces to be mined 

in period 𝑘, respectively. 𝐹𝑘𝑖𝑗 is the total cost of transporting material from the min-

ing face 𝑖 to candidate in-pit crusher location 𝑗 in period 𝑘. Capital and operating 

cost of in-pit crusher to move material from candidate location 𝑗 to the processing 

plant is considered at each period by adding an extra transportation cost to the equa-

tion as 𝑚𝑘 + 1. They also added the relocation cost of 𝐶𝑘 that consists of all the 

costs associated with the relocation of the in-pit crusher in period 𝑘. 𝑥𝑘𝑖𝑗 , 𝑧𝑘𝑗 , and 

𝑦𝑘  are decision variables and 𝑤𝑘𝑗  is a logical variable. 

The optimization model presented above equation (8.22) minimizes total mate-

rial transportation costs, including truck transport and IPCC transport. The equa-

tions (8.23) to (8.25) incorporate costs of IPCC relocation to the decision-making 

model. Equation (8.26) confirms that 𝑃 number of crushers are open in period 𝑘 of 

the mine life. The model uses equation (8.27) to make sure that in period 𝑘, active 

mining face 𝑖 has assigned to a destination.  Equation (8.28) constraints the model 

to assign the active mining faces to the crusher locations that are open in period 𝑘. 

There are three other constraints in the model, equations (8.29) to (8.31) that are 

used for binary variables. 

The best locations to install and re-install the in-pit crusher over the mine's life 

are determined by minimizing the total transportation cost using the decision-mak-

ing model presented in equation (8.22) to equation (8.31). 

Summary 

Approximately 90% of the raw material are mined using surface mining methods. 

Among all the surface mining methods, open-pit mining has the most contribution 

to this material movement. Thus, in this chapter, we outlined how different analytics 

methods can help surface mine and, more specifically, open-pit mine managers in 



23 

their decision-making with and without incorporation of uncertainties. Four primary 

analytics approach that can be extensively used in surface mining activities are de-

scriptive analytics, analytics hierarchy process, optimization modeling, and predic-

tive analytics. Descriptive analytics such as exploratory data analysis methods are 

useful for operational data preprocessing and analysis for trucks and shovels or 

other types of material handling systems. AHP is often used as a procedure with 

which the right methods are selected. The best practice in making optimal decisions 

in long-/short-term planning and equipment dispatching and IPCC allocations is to 

use optimization models. And finally, predictive models and, more specifically, dis-

crete event simulations can be used to evaluate technology implementations and 

changes to the mining operation. 
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