MOHAMMAD EBRAHIM MOUSA PASANDI

IMPLEMENTATION OF RADIO-OVER-FIBER
OFDM SYSTEM INCLUDING A NOVEL OPTICAL
NULL-STEERING BEAMFORMER

Mémoire présenté
a la Faculté des études supérieures de I’Université Laval
dans le cadre du programme de maitrise en génie électrique
pour I’obtention du grade de maitre &s sciences (M.Sc.)

DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE
FACULTE DES SCIENCES ET DE GENIE
UNIVERSITE LAVAL
QUEBEC

2008

© Mohammad Ebrahim Mousa Pasandi, 2008



To my beloved parents



i

Résumé

L’objectif de ce projet est de concevoir et d’optimiser un systéme radio-sur-fibre, basé sur
OFDM, incluant un nouveau beamformer optique avec une capacité de déplacer les points

nuls appropriés pour les réseaux locaux sans fil.

Dans le premier chapitre, nous présentons les définitions et les connaissances nécessaires a
la compréhension du présent mémoire. Nous introduisons le concept de manipulation de
phase et de délai dans le but d’orienter un faisceau. Nous expliquons 1’idée générale der-
riere la formation de faisceau électrique et optique, le concept de beamformer et quelques

uns de ses avantages pour les systémes de communication sans fil avancés.

Comme démonstration expérimentale de la formation de faisceau, nous avons fait le design
et fabriqué un réseau d’antennes a I’aide de technologie a microstrip. Dans le second cha-
pitre, nous présentons la procédure du design a un €lément, la technique d’adaptation
d’impédance et certains éléments additionnels qu’il est nécessaires de considérer lors de la

fabrication du réseau d’antennes.

Dans le troisi¢me chapitre, nous étudions les diverses techniques de la formation de fais-
ceau. Nous débutons par présenter les avantages et les désavantages des méthodes déja
existantes. Par la suite, le cceur du projet, qui concerne le contréle indépendant de
I’amplitude et de la phase de chaque canal, est introduit. La description du design et la
comparaison entre les résultats numériques et expérimentaux démontrent la faisabilité¢ du
systéme. Egalement, I’impact de ces filtres optiques sur la qualité du signal transmis est
étudié. Dans ce mémoire, nous avons considéré le format de modulation IEEE 802.11
comme ¢étant le plus sophistiqué et celui le plus couramment utilisé dans le domaine des

réseaux locaux sans fil.

Dans le dernier chapitre, nous présentons des résultats de patrons de radiation mesurés, ob-
tenus en combinant le beamformer au réseau d’antennes dans un lien de radio-sur-fibre op-
timisé. Une discussion concernant les avantages, les désavantages et les travaux futurs per-

mettant d’améliorer ce prototype concluront ce mémoire.
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Abstract

The objective of this research is to implement an optimized OFDM-based radio-over-fiber
system including a novel optical null-steering beamformer well-suited for wireless-local-

area-network applications.

In the first chapter we provide definitions and background that we will need in presenting
our research results. We introduce delay and phase manipulations for steering the beam di-
rection. We explain the general idea behind electrical and optical beamformers. We intro-
duce the concept of null-steering beamformer and some of its capabilities in advanced wire-

less systems.

For the experimental demonstration of the null-steering beamforming, we have fabricated a
phased-array-antenna using microstrip technology. In the second chapter, we discuss the
design procedure for a single element radiator, its matching technique and introduce related

considerations to array fabrication.

In the third chapter, we study optical beamforming techniques. First, we review some pre-
viously proposed ideas in this area, their advantages and disadvantages. Then, the heart of
this optical null-steering beamformer, the independent control over the phase and amplitude
for each channel, is introduced. By describing the method of design and its evolution and
then by comparing the simulation and measurement results, we demonstrate the feasibility
of this system. The impact of these optical filters on the transmitted signal quality 1s stud-
ied. We consider the IEEE 802.11 as one the most sophisticated modulation formats com-

monly used for wireless-local-area-network applications.

In the last chapter, we show the pattern measurement results obtained by combining the
null-steering beamformer to the phased-array-antenna in an optimized radio-over-fiber link.
A discussion about the advantages, disadvantages and future possible efforts for improving

this prototype will conclude the results that we have obtained.
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Chapter 1

Introduction

1.1. Introduction

The field of wireless communications is growing at an explosive rate, covering many tech-
nical areas such as digital communication, electronic circuit design, antenna and microwave
engineering, wireless networks and recently even optical communication. The worldwide
activities in this industry are a sign of its huge economic significance. The demand for
wireless communication is anticipated to expand steadily in the number of users, new ser-
vices and the accessible coverage range [1-2]. This demand and the scarcity of the radio
frequency (RF) spectrum lead to the need to develop technologies to overcome its limita-

tions.



The application of antenna arrays to mobile communication systems has been suggested
recently to overcome the difficulties of limited bandwidth. Many studies show that antenna
arrays improve system performance by increasing channel capacity, extending coverage
range, tailoring beam shape and steering multiple beams to track many users. The use of
arrays also reduces multipath fading, co-channel interference, system complexity, cost and
bit-error-rate (BER). Adaptive antennas and the algorithms to control them are vital for new

high-capacity communication networks [1], [3].

In general, antennas may be classified as omnidirectional, directional and phased array. An
omnidirectional antenna, also called as an isotropic antenna, has identical gain in all direc-
tions while a directional antenna has more gain in certain directions and consequently less
in others. A phased-array-antenna (PAA) uses an array of simple antennas, such as omnidi-
rectional antennas, and combines the signals on these antennas to shape the array output.
Each antenna in the array is known as an element of the array. The direction where the
maximum gain appears is controlled by adjusting the phase between different antennas; the
signals are added in-phase in the direction where maximum gain is required. This proper
phase manipulation is called beam-steering and will result in an array gain equal to the sum
of the gains of all individual antennas. Taking advantage of beam-steering theory, PAA can
transmit data in a narrow beam towards users in one particular direction, and then switch
the beam towards another user in a different direction. As a result, using the same frequen-
cy band and allocating different beam slots for different users provides more service ca-

pacity with the same bandwidth.

The ability of the PAA to control and optimize the radiation pattern and other transmission
parameters translates to other advantages such as obviating mechanical components, in-
creasing the propagation range, and boosting system security. For beam-steering applica-
tions, there is no need to rotate the array plﬁysically. Therefore the PAA is able to change
the beam direction much faster than mechanically-steered antennas while providing greater
reliability. The transmission range is increased since the PAA radiated power is more fo-
cused (because of the higher directivity) in the direction of the user, instead of being propa-
gated over a broad region. Finally, wireless network security is boosted, as only potential

hackers in the same direction as the user can intercept the transmitted signal.




By using PAAs, the standard coverage area of a regular antenna can be divided into several
smaller angular segments. The PAA then switches between these different segments to
concentrate on different users. This diversity scheme is called space-division multiple-
access (SDMA). Currently, there are three different multiple-access schemes to differen-
tiate users occupying the same frequency spectrum. Frequency-division multiple-access
(FDMA) allocates each user a certain frequency sub-band within the available bandwidth.
Time-division multiple-access (TDMA) allocates each user a specific time slot in which
they are allowed to transmit and receive data. Code-division multiple-access (CDMA) en-
codes the signal with a unique code before being transmitted by the antenna and only re-
ceivers with the same code can decode the transmitted data. SDMA can be implemented
together with FDMA, CDMA and TDMA diversity schemes to increase the capacity of

wireless networks [1].

In addition to wireless communications, PAAs have been studied for many decades in the
field of radar, offering several advantages such as target tracking capability, increased de-
tection range, and reduced interference levels [1]. Over the past decade, the interest in
PAAs has extended to many other areas, such as satellite communications [4], astronomy
[5], and even in automotive applications [6], where PAAs can be exploited in cruise-control

systems to avoid collision.

1.2. Beam-Steering Concept

Figure 1.1 shows the diagram of a PAA with four elements, equally-spaced at a distance d.
The phase difference Ag between the signals applied to adjacent elements controls the
steering angle of 6,. Each PAA element transmits an electromagnetic field which becomes

an individual plane wave in the far-field region. The plane-wave fronts will interfere con-

structively in the desired direction of §,, if A¢ corresponds to the path-length difference of
dsin@, between adjacent elements. Therefore, the Ag required to steer the beam towards
a given direction, is

27 d [,
c

A sin 6, (1.1)



where f; is the carrier frequency of the transmitted RF signal in Hertz, 6, is the steering

angle in radian and c is the velocity of light (3x10® m/s). Equivalently, the phase differ-

ence Ag can be achieved by delaying the adjacent-element signals in the time domain by

Ar=isin90 (1.2)
c

Ap=(2n-d-fic)-sine, O e
et 3 R
\4 At?d-sinelc« ) Y4
i ° . . -

1

Figure 1-1: Schematic of beam-steering with delay and phase manipulation for a four-element PAA.

For instance, consider a four-element PAA that operates at 5 GHz, and with inter-element

spacing of half of the operating wavelength (d = 30 mm). To steer the beam toward

0, = 60°, the required Ag is equal to 2.7 rad (155.9 degrees), which corresponds to a Az
of 86.6 ps.

The PAA elements need not be aligned in a linear arrangement, but can also be arranged in
a two-dimensional or three-dimensional grid configuration. In this work, we only study the
linear configuration, and therefore we will restrict our discussion to this configuration. The

PAA elements may also be any type of antennas such as dipoles, patch apertures or horns

[7].



1.3. Beamforming in the Electrical Domain

Figure 1.2 shows a simplified diagram of a typical four-element PAA controlled by an elec-
trical beamformer in the transmit mode. The electrical input signal to be transmitted is first
divided by the number of PAA elements through an electrical power splitter. Then, each of
these signals passes through a regulator that adjusts the amplitude levels for that channel.
Afterwards, each signal is passed through a phase shifter that adjusts to the desired phase.

The signals are routed to their respective antenna element, and propagate toward the user.

Beam-steering is achieved by introducing the phase difference (A¢@) to the PAA element

signals via the phase shifters. There are two types of phase shifters that can be used for this
purpose. The first type is called the phase-based phase shifter where the phase shift is de-
pendent on an externally-applied control signal that can be electrical, magnetic, or mechan-
ical. The externally-applied control signal changes the waveguiding characteristics of the
device and changes the velocity of the propagating signal. In practice, phase-based phase
shifters are made of ferrite materials or pin diodes [8]. This method is the simplest way to
implement a phase shifter, as it only requires one component (a phase shifter). Furthermore,
any required phase shift can be achieved, as the relation between the phase shift and the
external control signal is continuous. However, beamformers that use phase-based phase
shifters suffer from beam squint. Beam squint is the phenomenon where the outer frequen-
cy components of a broadband signal are transmitted toward different angles. This pheno-
menon results in signal distortion. While equation 1.1 assumes the signal is concentrated

at f,, for a wideband signal there is significant energy at frequencies distant from center
frequency f,. Ideally a phase shift should be determined for each frequency, but this is un-

manageable. Phase-based phase shifters introduce an equal amount of phase shift to all fre-
quencies across the spectrum, thus this device results in beam squint. Therefore, beamfor-

mers using phase-based phase shifters cannot be used for broadband applications.

The other type of phase shifter is called true-time-delay (TTD) phase shifter. In these phase
shifters, electrically-controlled switches are used to switch the propagating signal from one
path to another path with a different length, resulting in different delays and this delay dif-

ference causes phase shift. Large phase differences can be achieved with these devices over



a relatively short distance. The switching element is the critical component for this type of
phase shifter. Recently, beamformers employing micro-electro-mechanical (MEMS)
switches have been reported [9]. The drawback of this type of beam-steering circuit is that
they can only introduce discrete phase-difference values. The advantage is that they do not
suffer from beam squint, so they support larger bandwidths.

Amplitude Regulator Phase Controller

Electrical Signal to be
Transmitted

| | <¢—— Beamforming Network

Electrical Power Splitter

Figure 1-2: Schematic of a typical electrical beamformer.

1.4. Optical Beamforming

In order to provide broadband wireless services for numerous users, we need access to
higher carrier frequencies. Electrical circuits operating at high frequencies exist but they
tend to be lossy, bulky, heavy, and very susceptible to electromagnetic interference. Optical
circuits can be used to alleviate most of the problems encountered with high-frequency
electronic circuits [10]. The high-frequency signals can be modulated onto the optical car-
rier, and subsequently all necessary high-frequency signal processing can be performed in
the optical domain. The advantages of the implementation in the optical domain include
low propagation losses, small size, low weight, high bandwidth and immunity to electro-
magnetic interference. Many different types of optical beamformers for high-frequency
PAA applications have been reported. An overview of the most recent and elegant optical
beamforming techniques is reported in chapter three. '




Figure 1.3 depicts a simplified diagram of a typical optical beamformer in the transmit
mode. The source can be either a single optical wavelength, or a multiwavelength source to
support a wavelength-division-multiplexing (WDM) beamformer. The WDM system em-
ploys an optical wavelength demultiplexer instead of an optical power splitter following
modulation. Consider the single optical wavelength setup: the signal to be transmitted is
first modulated onto a single optical wavelength generated by a laser source. Afterwards,
this optical wavelength is divided in power by the number of antenna elements with an op-
tical power splitter. Subsequently, each of the divided signals is connected to an amplitude
regulator and a phase controller section. Finally, each of the divided signals is detected by a

photodetector (PD), and applied to a PAA element.

Beamforming Network Amplitude Regulators  Phase Controllers Photodetectors

Elect_ri:ical Signal to be 1 L A l— A ¢ A
A A Ao A @
% A 3% A = A @/ A
Optical Laser Source Modulator [ A l—[ A e 1 A
S, 7 A \)&}
A i

Optical Power Splitter/Wavelength Demultiplexer

Figure 1-3: Schematic of a typical optical beamformer.

In the WDM beamforming setup, the same signal to be transmitted is modulated onto four
optical wavelengths. One of the advantages of electro-optical modulation (EOM) is that a
single device can be used to simultaneously modulate an arbitrary number of optical wave-
lengths. Next, the four optical wavelengths are split by an optical demultiplexer and each
wavelength is conveyed through the amplitude regulator and the phase controller, and ulti-
mately applied to the PAA after detection with a PD. Another advantage of optical beam-
forming is that, because of the low propagation loss, the PAA and the PDs can be placed far
from the beamformer, and linked together by a single optical fiber. This allows integration
of the components into subsystems to reduce cost. For example, this WDM architecture can

be modified by integrating all phase controllers in a unique set to be placed before the de-




multiplexer. This enables the designer to combine the laser source, the EOM and the phase

controller set in a single subsystem at a central office (CO) a few kilometers from the PAA.

Figure 1-4: SLL ratio adjustment by amplitude manipulation in a four-element uniform linear array
with half-wave spacing by applying different relative attenuations: a) 0 dB, 0 dB, 0 dB, 0 dB; b) 0 dB,
3dB, 3dB, 0dB; ¢) 3dB, 0dB, 0 dB, 3 dB. The array elements are omnidirectional antennas.



1.5. Null-Steering Beamforming

Adjusting only the phase of the signals feeding different elements to point a beam in a de-
sired direction is the conventional method of beam-steering in which the amplitude of each
signal is kept the same. In this case, the shape of the antenna pattern is unchanged, that is,
the relative position of the side-lobes with respect to the main beam and their level. This,
however, can be changed by adjusting both amplitude and phase of each signal to shape the
pattern. The amount of change depends upon the number of elements in the array. This type
of beamforming is known as null-steering beamforming or beam-shaping [1] and the PAA

is also called an adaptive array.

The amplitude and phase of the signals for each element may be thought of as a single
complex quantity or weight applied to the signals. If there is only one element, weight can-
not change the pattern of that antenna. With two elements, however, by changing the
weight of one element relative to the other, the pattern can be adjusted to the desired value
at one location, that is, it is possible to place one minimum (null) or maximum anywhere in
the pattern. Similarly, with three elements, two positions may be determined, and so on.
Thus, with an N-element array, N-1 positions can be specified. These may be one maximum
in the direction of the desired signal and N-2 minimums in the directions of unwanted inter-
ferers. This flexibility of an N-element adaptive array to fix the pattern at N-1 positions is
known as the degree of freedom of that adaptive array. For an equally-spaced linear array,
this is similar to an N-1 degree polynomial of N-1 adjustable coefficients, with the first co-

efficient being unity [1], [7].

Alternately, in this type of beamformer, the side-lobe level (SLL) ratio can be controlled by
weighing the elements [7]. Figure 1.4 shows this ability for a four-element linear uniform
array with half-wave spacing. When a uniform phase difference of 90° is applied between
the array elements and the signal amplitudes are kept the same, the pattern experiences a
SLL ratio of 11 dB (Figure 1.4a). Applying a tapered amplitude excitation with 3 dB differ-
ence (i.e., attenuation of 3 dB, 0 dB, 0 dB and 3 dB respectively) with the same amount of
phase difference of 90°, will result in a pattern with a SLL ratio of more than 14 dB (Figure

1.4b). However the normalized array gain (normalized by the number of elements) is re-
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duced by 1.25 dB because less power is fed to the antennas with 3 dB attenuators. Figure
1.4c shows the case when we apply the attenuations of 0 dB, 3 dB, 3 dB and 0 dB respec-
tively. In this case, a stronger side-lobe can be observed with the SLL ratio of 6 dB. Again,

the normalized array gain is reduced by 1.25 dB because of two 3 dB attenuators.

Null-steering beamforming is most commonly applied in outdoor wireless networks. How-
ever, it has been also proposed for indoor networks to reduce interference and mitigate mul-
tipath fading, hence to improve the capacity. For example, Wang [11] uses beamforming in
indoor networks to fight multipath fading using a diversity combining technique. Katz [12]
combined beamforming and block coding to improve the link diversity of indoor channels.
Recently, Chen [13] proposed the use of adaptive arrays in orthogonal-frequency-division-
multiplexing (OFDM) systems, in such a way to exploit the characteristics of the OFDM
signal to find the radiation pattern that minimizes interference. Interference minimization
can be optimized if full control of the antenna radiation diagram is available through simul-
taneous amplitude and phase control of the antenna elements, in contrast with phase control
only [14]. Consider directional sources operating at the same frequency as that of the de-
sired source, but not falling in the direction of the desired source. In situations where the
directions of these interferers are known, cancellation is possible by placing the nulls in the
pattern in the direction of interferers and simultaneously steering the main beam in the di-
rection of the desired signal. The cancellation of each source of interference by placing a

null in the pattern uses one degree of the freedom of the adaptive array.

The advantages described are mostly associated with uplink null-steering beamformers.
Several electrical uplink beamformers have been developed and exploited. However, quite
a few optical downlink beamformers have been proposed [23-30], to our knowledge, just
one optical uplink beamformer has been suggested in [29], but no demonstration was pro-

vided.

For both electrical and optical beamformer schemes studied in Section 1.3 and 1.4, beam-
shaping (null-steering beamforming) can be achieved by not only controlling the phase but
also the amplitude of the signal applied to each PAA element. In practice, the amplitude is

controlled using electrical/optical attenuators at each antenna element. In this case, the am-
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plitude regulators in Figure 1.2 and Figure 1.3 are no longer just a power regulator and they

apply the desired set of attenuations in each channel.

1.6. About This Work

The objective of this research is to demonstrate the concept of a novel optical null-steering
beamformer, to describe theoretical concepts and to report experimental results. To our
-knowledge, this type of beamformer has not been reported to date and this work can be
considered as an important step toward an all-optical and integrated processing unit for
supporting wireless-local-area-network (WLAN) systems using radio-over-fiber (ROF)
technologies. The general architecture of the ROF link is shown in Figure 1.5. By using a
multiwavelength laser source with a channel spacing of 25 GHz, the link will be compatible
with dense WDM (DWDM). Each wavelength feeds one of the array elements. The wave-
lengths from a multi-carrier source are modulated using double side band (DSB) with a sin-
gle Mach-Zehnder (MZ) modulator driven by an information signal on a 5 GHz RF carrier.
After optical amplification, the modulated wavelengths are optically processed by the
beamformer module which is based on fiber Bragg grating (FBG) technology. This module
sets the appropriate phase and amplitude on the RF modulated signal of each wavelength to
shape the resultant array pattern to the desired pattern. Once modulated, the light is propa-
gated over an ROF distribution link and finally demultiplexed by an arrayed waveguide

grating (AWG), detected by PDs and fed to the array elements.

The beamformer module consists of some FBG-based optical filters which do not constitute
a TTD system. For a linear uniform antenna array with constant element spacing the steer-

ing direction g, can be derived from equation 1.1 as:

0, = arcsin| — 2P (13)
2r d f,

where Ag is the amount of interelement phase difference. By using this equation, Figure
1.6 illustrates the achievable beam-steering range versus the inter-element phase tunability
for a linear uniform array with half-wave spacing. As we see, for a maximum steering

range of 180°, an inter-element phase difference of 2z is required. However, 180° is consi-
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sidered an extreme case in beamforming application. Practical beamforming systems have

range below 180°.

The signal amplitude configuration of the array elements can be optimized using various
methods. The binomial optimization is recognized as a method that provides very low SLL
ratio, but wider main lobe [7]. The Dolph-Tchebyscheff method is usually considered as the
most complicated and powerful method for any kind of array design [7]. The binomial de-
sign technique uses a very aggressive amplitude apodization [7], [16]. For example, an
eight-element array with binomial design requires a maximum amplitude attenuation of 16
dB in the RF domain which is equivalent to 8 dB optical attenuation. Therefore, as a rule of

thumb, we will consider 10 dB tunability as a design goal.

RF signal 1
ot .
2 N generator 2
A AL ’ § |
Beamformer ’
|- | W N-1
Multiwavelength @ Module ROF

Laser Source MZ Modulator distribution link N

Amplified detectors

Figure 1-5: Schematic of the proposed ROF link including the beamformer module.

In this chapter, we provided definitions and background that we will need in presenting our
research results. We introduced delay and phase manipulations for steering the beam. We
explained the general idea behind electrical and optical beamformers. We introduced null-

steering beamformer and some of its capabilities in advanced WLAN systems.

For the experimental demonstration of a PAA, rather than using a commercial array an-
tenna, we have fabricated a PAA by microstrip technology as a cheaper and well-matched
solution. In the next chapter, we will discuss the design procedure for a single element ra-
diator, its matching technique and introduce related considerations to array fabrication.
Since this is not the main contribution of the work, we limit the context to essential notions

and we refer the reader to numerous existing references for complementary information.
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In the third chapter, we study optical beamforming techniques. First we review some ele-
gant previously proposed ideas in this area, their advantages and disadvantages. Then the
heart of this optical null-steering beamformer, the independent control over the phase and
amplitude for each channel, is introduced [15]. By describing the method of design and its
evolution and then by comparing the simulation and measurement results, we demonstrate
the feasibility of this system. The impact of these optical filters on the transmitted signal
quality 1s studied to assure that a null-steering beamformer can transmit signals without
adding noise or distorting. For that, we consider the IEEE 802.11 wireless standard as one

of the most sophisticated modulation formats commonly used for WLAN applications.
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Figure 1-6: Achievable amount of beam-steering range versus the inter-element phase tunability

for a linear uniform array with half-wave spacing.

In the last chapter, we will show the pattern measurement results obtained by combining
the beamformer to the PAA in an optimized ROF link to prove the concept of null-steering
optical beamforming. A discussion about the advantages, disadvantages and future possible

efforts for improving this prototype will conclude the results that we have obtained.
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Chapter 2

Design and Fabrication of the Antenna

Array

2.1. Introduction

An antenna array is a spatially extended collection of N similar radiators, where N is an in-
teger number higher than 1. The term “similar radiators” means that all the elements have
the same polar radiation patterns, orientated in the same direction in three-dimensional
space. The elements do not have to be spaced on a regular grid, neither do they have to
have the same excitations, but it is assumed that they are all excited with the same frequen-

cy and that one can define a fixed amplitude and phase angle for the drive voltage of each




15

element. In the following paragraphs, we present some basic definitions that will be used

frequently in this chapter.

Power Gain: The power gain of an antenna is the ratio of the input antenna power to
the output antenna power. This gain is most often expressed in units of dBi, which is a lo-
garithmic gain relative to an omnidirectional antenna. For example, a gain of 12 dBi (also
indicated by dBic) means the maximum radiated power by this antenna in a given direction
in three-dimensional space is 12 dB more than the radiated power by an omnidirectional
one. The same antenna may be used as a transmitting antenna or as a receiving antenna and
the antenna gain remains the same in both cases. In the latter case, the gain of a receiving
antenna specifies the amount of power it delivers to the receiver with respect to an omnidi-

rectional antenna.

Directivity: The antenna directivity is a measure of the concentration of the radiated
power in a particular direction. It may be regarded as the ability of the antenna to direct ra-
diated power in a given direction. It is usually a ratio of radiation intensity in a given direc-

tion to the average radiation intensity.

The field pattern associated with an antenna changes with distance and is associated with
two types of energy: “radiating energy” and “reactive energy”. Based on them, the space

surrounding an antenna can be divided into three regions:

Reactive near-field region: In this region, the reactive field dominates. The reactive
energy oscillates towards and away from the antenna, thus appearing as reactance. In this

region, energy is only stored and no energy is dissipated. The outermost boundary for this
region is at a distance R, =0.624/D,’ /A, where R, is the distance from the antenna sur-

face, D, is the largest dimension of the antenna and 4, is the operating wavelength [7].

Radiating near-field region (Fresnel region): This is the region which lies between the
reactive near-field region and the far-field region. Reactive fields are smaller in this field as
compared to the reactive near-field region and the radiation fields dominate. In this region,

the angular field distribution is a function of the distance from the antenna. The outermost
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boundary for this region is at a distance R, =2D,*/ 1, where R; is the distance from the

antenna surface [7].

Far-field region (Fraunhofer region): The region beyond R, =2D,’ /4, is the far-
field region. In this region, the reactive fields are absent and only the radiation fields exist.
The angular field distribution is not dependent on the distance from the antenna in this re-

gion and the power density varies as the inverse square of the radial distance [7].

Array factor and array pattern: The polar radiation pattern of a single element is
called the “element pattern” and the “array factor” is the polar radiation pattern which
would result if the elements were replaced by omnidirectional radiators, having the same
amplitude and phase of excitation as the actual elements. If we imagine that all the polar
radiation patterns of the elements taken individually are identical (within a certain toler-
ance) and that the patterns are all aligned in the same direction in azimuth and elevation,
then in the far-field region the “array pattern” is derived by multiplying the array factor by

the element pattern [7].

To design the array, the first step is to design the appropriate single element. Considering
the requirement for low cost, ease in packaging and the 5 GHz band for WLAN application,
a microstrip antenna (patch antenna) has been chosen for design and manufacturing. Micro-
strip antennas can be made to emulate many of different types of antennas but several tra-
deoffs need to be considered in their design. Because they are manufactured with printed
circuit board (PCB) traces on actual PCB boards, they can be very small and lightweight.
This comes at the cost of not being able to handle as much radiated power as other anten-
nas. In addition, they are made for very specific frequency ranges, even if in many cases,
limiting the frequencies that can be received is actually advantageous to the performance.
Due to this characteristic, microstrip antennas are not well suited for wideband communica-
tions systems. However, for WiFi and other narrowband purposes, they are the most preva-

lent solution [16].

In this chapter, at first, we study the formulation of an array patterns to become familiar

with the suitable array parameters. Then the design procedure for a single frequency radia-
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tor and its matching technique, both based on a microstrip substrate, is discussed. Finally,
the measurement results of the S;; parameter and the radiation pattern of the fabricated

matched antenna are reported.

2.2. Uniformly Excited Linear Arrays

In general, the excitation for each element of an array consists of amplitude and phase. This
discrete distribution is often called an aperture distribution, where the discrete array is the
aperture. The array pattern is the product of the isolated element pattern and the omnidirec-
tional array factor; this is the “forced excitation” case. To achieve this, the element drives
are individually adjusted so that the excitation of each element is exactly as desired. The
other case is the “free excitation” situation, where the element drives are all fixed, and the
element excitations are those allowed by the scan impedance [17]. Here, the concern will be
only with the forced excitation érray, where the excitations afe constant in amplitude, but
may have a scanned phase. To have a uniform and linear configuration, the elements are

equally spaced in a row and the inter-element phase differences are all the same.

2.2.1. Pattern Formulations

The radiated field from a linear array is a superposition (sum) of the fields radiated by each
element in the presence of the other elements. Following the usual notation, the angular va-

riable, u, that is used in the expression of radiation pattern, can be defined as:
u =sin@ —sin6, (2.1)
where: the beam peak is at 6y, the angle from broadside is @ and the element spacing is d.

Although the far-field pattern is written as a simple sum of amplitude and exponential

phase path length terms, it is convenient to provide a pattern formulation F'(x), valid for

both even and odd numbers of elements as shown in Figure 2.1:

F(u)= iAn expl jkd(n —u] (2.2)

n=|
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where the amplitude excitation coefficients are denoted by A4,, the array has N elements,

and k =27/ 4,.

For uniform excitation (equal inter-element spacing, same amplitudes, and similar inter-

element phase differences) the array pattern has the form [17]

sinl Nkdu
F(u) = exp|jm(N - 1)u]271 (2.3)
N sin 5 kdu

This inter-element phase shift is A = kdsiné, given by 1.1. By varying this phase shift,

the beam direction, §,, can be scanned to achieve beam-steering.

//
/
/
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n=1 p) 3 q n=

Figure 2-1: Linear array geometry.

2.2.2. Half Power Beamwidth

Half-power-beamwidth (HPBW) is the angular separation between the half-power points on
the antenna radiation pattern, i.c., the two points on either side of the maximum, where the

gain is one half the maximum value. The half-power points on a uniform array pattern can
. 1 1 :
be computed by solving SmEde”m /Nsmgkduw =+/0.5. Increasing the steer angle,

6y, will directly increase the HPBW hence pointing the beam at extreme angles broadens
the beam and reduces the resultant array directivity. For large arrays, i.e., N — o, the

HPBW tends to [17]



19

0.8864,

= 2.4
o Nd cos 6, @4)

where by increasing the number of elements, N, we obtain narrower beams and consequent-
ly more directivity until the lower limit given in (2.4). Note that the number of side-lobes

and the SLL ratio increase with the number of elements [17].

In WLAN applications, eight elements are considered sufficient to provide flexible beam-
forming. In this work, as a proof of concept, a four-element array is designed and tested due
to the availability of equipment in the laboratory. The proposed approach could be extended

to a larger number of elements.

2.2.3. Grating Lobes

We want inter-element spacing to be as large as possible to achieve results higher directivi-
ty [17]. However, large spacings between array elements will produce multiple main beams
called grating lobes (GL). The larger spacing allows the waves from each element to add
in-phase at the GL angles as well as at the main beam angle. For a given main beam angle

6y, grating lobes will not appear if the element spacing, d, satisfies [17]

d< Ay

< _ 2.5
1+siné, (&)

We also wish to have an array that can steer the maxima to a range as wide as possible, i.e.,
. . . . Ao , . :
-90° <6, <+90°. We select an inter-element spacing of d = > to avoid grating lobes in

the visible range, to have highest possible directivity and to have maximal steering range.

2.3. Microstrip Patches

Having opted for a PCB implementation of our antennas, we opt for the microstrip antenna
form. A microstrip antenna (microstrip patch) is a resonant metallic shape on top of a mi-
crostrip conductor. Patches can be in many shapes, but most are rectangular (nearly square)

or circular. The polarization and radiation pattern of patches are similar to those of half-
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wave dipoles [7]. The zero-order pattern for a rectangular patch with width # and length L
is given by [16]:

sinﬂ
E, :cose.cos%. quz (2.6)
2

where s =sinf.cos¢ and g =siné.sing while 6 and ¢ denote elevation angle and azi-
muth angle respectively. For a circular patch of radius a, with f = kasin @, the zero-order

pattern has the form of [16]:
E, = cos0]Jo(B)—cos(2¢)J,(5)] 2.7)

where Jjand J, are Bessel functions of the first kind of order zero and two, respectively.

2.3.1. Advantages and Disadvantages

Microstrip antennas are increasing in popularity for use in wireless applications due to their
low-profile structure. That makes them suitable for portable wireless devices such as cellu-
lar phones and laptops. They have been also used successfully in military applications and
satellite communications [20]. Their principal advantages are: light weight, small volume,
low fabrication cost, support of both linear and circular polarization, integratability with
microwave integrated circuits (MIC), capability for dual and triple frequency operation, and

mechanical robustness when mounted on rigid surfaces [18].

Microstrip patch antennas also suffer from a number of disadvantages compared to conven-
tional antennas. Some of their major disadvantages discussed in [18] are narrow bandwidth,
low efficiency and gain, extranecous radiation from feedline and junctions, and low power

handling capacity.

Microstrip antennas have a high quality factor () as a resonator. The Q-factor is inversely
proportional to the losses associated with the antenna and a large O-factor leads to narrow
bandwidth and low efficiency. The Q-factor can be reduced by increasing the thickness of

the dielectric substrate. But as the thickness increases, an increasing fraction of the total




21

power delivered by the source is diverted to the surface wave [16]. This surface wave con-
tribution can be considered as an unwanted power loss since it is ultimately scattered at the
dielectric bends and results in degradation of the antenna characteristics. Drawbacks such

as low gain and low handling power capacity can be overcome in the array configuration.

2.3.2. Feed Techniques

Microstrip antennas may be fed by a variety of techniques, either “contacting” or “non-
contacting”. In the contacting category, the RF power is fed directly to the radiating patch
using a connecting element such as a microstrip line or coaxial cable. In the non-contacting
scheme, electromagnetic field coupling is used to transfer power between the microstrip
line and the radiating patch [18], [20]. The contacting feed technique was used due to

equipment availability. The contacting scheme can be implemented in two common ways.

Microstrip Line Feed: In this feed technique (Figure 2.2), a conducting strip is con-
nected directly to the edge of the microstrip patch. The width of the strip is smaller com-
pared to the radiator and can be etched on the same substrate to provide a planar structure.
This is a convenient feeding scheme, due to ease of fabrication and simplicity in modeling.
However, as the thickness of the dielectric substrate increases, surface waves and spurious

feed radiation also increase [16].

> Patch (main radiator body)

: >

Ground Plane

Figure 2-2: Microstrip line feed schematic.
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Coaxial Feed: The coaxial feed or probe feed is another common technique used for
feeding microstrip antennas. As we see in Figure 2.3b, the inner conductor of the coaxial
connector extends through the dielectric and is soldered to the radiator, while the outer
conductor is connected to the ground plane. The main advantage of this type of feeding
scheme is that it has low spurious radiation. However, its main disadvantages are that it has
narrow bandwidth and is problematic to model as it is not planar (a hole has to be drilled in
the substrate and the connector protrudes outside the ground plane). For thicker substrates,
the increased probe length also leads to a more inductive input impedance and matching

problems [16], [18].

In the next section, we will see that by increasing the substrate thickness, the antenna
bandwidth increases linearly, however, as was discussed, for a thick dielectric substrate
both the microstrip line feed and the coaxial feed suffer from numerous weaknesses. The

non-contacting feed techniques can solve some of these troubles.

Patch (main radiator body)

Patch (main radiator body)

Substrate

. Ground Plan
Coaxial Connector e

a) b)

Figure 2-3: Schematic of coaxial feed.

2.3.3. Transmission-Line Model

In this section we present equations describing relationships between PCB material (dielec-

tric constant £, and substrate height %), the system carrier frequency f, and the physical

characteristics of the patch (length L and width ). In Section 2.4.1, we describe our choice
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of substrate, and in Section 2.4.2 we deduce the physical dimensions for our antenna de-

sign.

The best-known models for the analysis of microstrip antennas are the transmission line
model, cavity model, and full wave model [16]. The transmission line model is the simplest
of all and it results in good physical insight but it is less accurate. The cavity model is more
accurate and gives good physical insight but is complex. The full wave model is extremely
accurate, versatile and can treat arbitrarily shaped elements and couplings. The full wave
model gives less insight as compared to the other two models and is far more complex in
nature. Considering our need for a simple, single-frequency rectangular antenna and the
limited fabrication accuracy in layout printing on the substrate and presumed design pa-

rameters, the transmission line model is sufficient for our design.

Substrate ?
Ground Plane

Figure 2-4: Structure of a rectangular microstrip antenna.

The microstrip is essentially a non-homogeneous transmission line with two dielectrics: the
substrate and air. Hence, most of the electric field lines reside in the substrate, with parts of
some lines in the air. As a result, this transmission line cannot support pure transverse-
electric-magnetic (TEM) mode of transmission; it is a strip waveguide and the phase ve-
locities in the air and the substrate are different, making boundary conditions impossible to

meet. Instead, the dominant mode of propagation is the quasi-TEM mode of TM . Thus an
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effective dielectric constant (€, ) must be found to account for both the fringing and the
wave propagation in the line. The value of €, is slightly less then &, because the fringing

fields around the periphery of the patch are not confined in the dielectric substrate but also
extend in the air. Consider Figure 2.4, which shows a rectangular microstrip antenna of
length L and width W embedded on a substrate of height 4. The co-ordinate system is such
that the length is along the x direction, width is along the y direction, and the height is along

the z direction. The expression for €, for the TM ;o mode is [7]

reff

-1
e :%(s )+ (2.8)

P+ ——
21+120/W

reff

In order to operate in the fundamental TM;y mode, the length of the patch must be slightly

less than A/2 where A is the wavelength in the dielectric medium and is equal to 4,/ .,/ E o 5

where A, is the free space wavelength. The TM;y mode implies that the field varies by one

M2 cycle along the length, and there is no variation along the width of the patch.

Radiating Slots

Patch

Figure 2-5: Electric field lines.

In Figure 2.5, the microstrip antenna is shown from the top, open circuited at both ends

across the length. Along the width of the patch, the voltage is maximum and current is
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imum due to the open ends.-The fields at the edges can be resolved into normal and tangen-

tial components with respect to the ground plane. The normal components of the electric
field at the two edges along the width (x = —é and x = +§) are in opposite directions and

thus out of phase since the patch is A/2 long; they cancel each other in the broadside direc-
tion. The tangential components are in phase, meaning that the resultant fields combine to
give maximum radiated power normal to the surface of the structure. Thus, the edges along
the width can be represented as two radiating slots, which are A/2 apart and excited in phase
and radiating in the half space above the ground plane. Considering Figure 2.5, the effec-

tive length of the patch L, now becomes
L, =L+2AL (2.9)

The AL parameter has been empirically derived as [19]

AL = 0412k (€, +0.300 ) / h+0.262)
T e, —0.258)W /7 +0.813)

(2.10)

For a rectangular microstrip antenna, the resonance frequency for any 7'M,,, mode is [7]

|
2 2£
f (mn)=—= [i} +(—"J @.11)
2\E |\ Lo Wy

where m and n are modes along L, and W,, respectively. Since there is no field variation
along the width for My mode, the values of W,, and ¥ are equal. By solving (2.11) for

m=1 and n=0 (the dominant mode of 7M;), the effective length is related to
fo = f(1,0) by

- (2.12)

L.
eff /
2 ]{0 gre_[/

For efficient radiation, the width W is suggested by Bahl and Bhartia [20] as:
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We— (2.13)

Hence, by using equation 2.8, 2.9, 2.12 and 2.13, one can easily find the appropriate dimen-
sions for a single frequency radiator based on the transmission line model. The fractional
bandwidth for the resultant rectangular microstrip antenna, for a voltage standing wave ra-
tio (VSWR) less than 2, can be approximated by [16]

BW = ai (2.14)

~ J2e, 4,

This equation states that the bandwidth is proportional to substrate thickness and inversely

proportional to the square root of the dielectric constant.

2.4. Microstrip Antenna Design and Fabrication

A single element design has three steps. First an appropriate substrate is selected based on
the operating frequency and application. Next, the dimensions of the radiator main body
must be determined. Finally, the input impedance of the radiator must be matched to deliver

the highest possible power to the antenna.

2.4.1. Substrate Selection

One of the most important tasks in microstrip design is the selection of an appropriate sub-
strate material. The major electrical properties to consider are relative dielectric constant
and loss tangent. A high dielectric constant results in a smaller patch, but generally reduces
bandwidth (2.14) and requires tighter fabrication tolerance. A high loss tangent reduces an-
tenna efficiency and increases feed losses. Generally, it is best to select a substrate with the
lowest possible dielectric constant consistent with the physical space available on the PCB
for the antenna. Substrate thickness should be chosen as large as possible to maximize
bandwidth (2.14) and efficiency, but not so large as to risk surface wave excitation. As a

rule of thumb, for maximum operating frequency f the thickness should satisfy [16]
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he 03¢ (2.15)

2w fyfe,

For example, for our design we require an antenna operating at the resonant frequency of 5
GHz; the maximum allowable thickness is 1.7 mm for a substrate having a dielectric con-
stant of 3. In addition, if the system must operate within a narrow frequency band, dielectric

constant uniformity and stability will be important; a variable ¢, will cause the patch fre-

quency to wander and can reduce efficiency.

Traditional patch design at microwave frequencies uses substrates such as alumina, quartz
and PTFE [7], [20]. These substrates offer excellent electrical performances but the costs
are often too high for commercial applications. Epoxy FR4 is a widely used low-cost ma-
terial for frequencies below about 1 GHz or so. Low-cost commercial RF designs need sub-
strates that combine the previously-mentioned advantages. RO4230™ high frequency la-
minate is one of these low-cost commercial substrates from “Rogers Corporation” specially
produced for high frequency wireless application [21]. This ceramic filled, glass reinforced
hydrocarbon-based material provides the controlled dielectric constant, low loss perfor-
mance and excellent passive intermodulation response required for mobile infrastructure
microstrip antenna applications. Moreover, the material is halogen free and meets common
worldwide “green” standards! This substrate is fully compatible with conventional FR4
processing and does not require any of the special treatment needed for PTFE-based lami-
nates in the hole preparation process. This laminate is an affordable alternative within the

40 GHz band, thus allowing designers to maximize the price and performance of antennas.

The resin system of RO4230™ dielectric material is designed to provide the necessary
thermo-mechanical properties for ideal antenna performance. The thermal coefficient of
expansion in both the x and y directions are similar to that of copper. This attribute mini-
mizes the thermal effects of environmental conditions and reduces stresses that can lead to

warpage of the printed circuit board antenna [21].

In addition to excellent thermo-mechanical performance, RO4230™ laminate embodies

electrical characteristics that antenna designers need. The laminate has a dielectric constant



28

of 3 £ 0.05 and a loss tangent of 0.0020 measured at 5 GHz. These values allow antenna

designers to realize substantial gain values while minimizing signal loss [21].

2.4.2. Radiator Element Design

In this section, we examine the design procedure of a single element radiator. We start by
specifying the operating parameters such as operational frequency (fy), dielectric constant
(e,) and height of the substrate (4). The resonant frequency of the antenna must be selected
appropriately. For transmitting IEEE 802.11a signal, according to the protocol, we have
two choices: 2.4 GHz or 5 GHz. Considering the beamformer design is for 5 GHz band op-

eration, we selected a resonant frequency of f, =5 GHz. The RO4230™ has been chosen

as the dielectric material with dielectric constant of & =3 and dielectric height of

h =1.524 mm which satisfy the condition of (2.15).

Using these basic parameters and employing the transmission line model, we then proceed

to determine the dimension of the antenna:

Step 1: Having selected ¢, =3 and f, =5 GHz, we calculate the radiator width (W) using

equation (2.13):
C
W=——oneoeo-=212 mm

g, +1
2o\

Step 2: Having selected 4 =1.524 mm, the effective dielectric constant (&,.) from (2.8), is:

£ry =%(gr i)l 993

2W+1201W
Step 3: The effective length (L.p) is found from (2.12):

L o=—5 181 mm

eff [
2 fO gre/}

Step 4: The length extension (AL) is found from (2.10):
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AL =0.412h EE’H + 0-300XW/h +0.262)

=0.98 mm
£, —0.258 W / h+0.813)

Step 5: The length of the patch (L) is found from (2.9):
L=L, -2AL=162 mm

Step 6: The transmission line model is only valid for infinite ground planes. However, prac-
tically we have a finite ground plane. It has been shown in [18] that similar results for finite
and infinite ground plane can be attained if the size of the ground plane is approximately
three times greater than the patch dimensions of the substrate thickness all around the peri-
phery. Hence, for this design, the minimum ground plane dimensions should be greater

than:

L, =6h+ L =26 mm
Wg=6h+Wz31 mm

In the fabrication process we devoted a larger surface for the ground plane to make sure

that the L, and W, conditions are met.

2.4.3. Impedance Matching

For the radiator to transmit the signal at 5 GHz, the signal should be fed efficiently to the
antenna. Impedance matching to antennas can be achieved using different techniques such
as external electronic circuits, external microstrip circuits, dual or triple matching stubs,
quarter wave section, etc. We impedance matched the antennas without using any extra cir-
cuit or device simply by optimizing the connection. As we discussed in Section 2.3.2, for a
two-layer patch design, two methods, both belonging to the “contacting” category, are pre-
valent: coaxial feed and microstrip feed. So the goal will be to perfectly match the characte-
ristic impedance of the feedline or coaxial probe with the input impedance of the antenna at

the contact point.
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The first technique, coaxial feed, requires a perpendicular connection between the center
pin of the coaxial cable and the radiator body (see Figure 2.3b). The hole position is se-
lected in such a way to guarantee an input impedance equal to the characteristic impedance
of the coaxial cable, which is usually 50 Q. However, the implementation is problematic as
great precisions is required in the hole fabrication; also symmetric soldering is required to

achieve a good matching response.

I
_>: lg— Patch

Figure 2-6: Matching parameters.

The other technique, microstrip feed, has been chosen, as depicted in Figure 2.6. For micro-
strip feed impedance matching, further parameters must be determined: microstrip feedline
width (w), the amount of inset (/) and the amount of separation between microstrip line and
radiator body (g). The purpose of the inset cut in the patch is to match the impedance of the
feedline to the patch without the need for any additional matching circuit or element. This
is achieved by proper control over the inset position. Knowing that the SMA cables and
connectors have the characteristic impedance of 50 €, the input impedance of the feedline
must be 50 € at the connection point with the coaxial cable (Point A in Figure 2.6). From
here the microstrip feedline width (w) is determined and it will consequently force the
amount of inset (/) to be chosen in a way to provide the input impedance of 50 2 at the con-

nection point with radiator body (Point B in Figure 2.6).
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Figure 2-7: Array layout for printing over the substrate (a) and the fabricated home-made array (b).

The characteristic impedance of a microstrip line can be calculated, knowing the width of w

and substrate thickness of 4, as [16]

z,--% m[ﬁ+lJ PR
greﬂ w 4h h
‘ 2.17
7 - 1207 P (2.17)
O JEry W/ h+1393+0.667In(w/ h +1.444)] P

This equation gives a width of 3.8 mm for the feedline to meet the 50 Q characteristic im-
pedance condition for RO4230™ material. A trial and error method is used to find the inset
value at point B using commercial software [16]: for different inset amounts, the return loss

(RL) is computed and the inset amount giving the most negative RL is selected. According




to [16], there exists a point along the length of the patch where the RL is minimum. The

simulation leads to 5.5 mm as the amount of inset for f, =5 GHz.

With an inset around the feedline, some gap, g in Figure 2.6, must be used to isolate the line
from the patch. There are no particular guidelines for this. As an approximate rule-of-
thumb, a spacing of 0.1 to 0.5 of the line width is suggested [20]. Wide lines have more
field concentrated under the line; thus narrow spacings are appropriate. Conversely narrow
lines should have wider spacings. For all cases, the combination of feed and gap width
should be less than 25% of the patch width to avoid blockage [20]. In our design, we use

g =1 mm to satisfy these conditions.

Up to this point, we have determined the general antenna design for operating at a single
frequency to achieve acceptable transmitting or receiving characteristics. However, by join-
ing the feedline to the radiator main body, the feedline will act as a part of the radiator, af-
fecting the resonant frequency. To have a more precise design, we should consider the mi-
crostrip feedline as a part of the antenna resonance system. This correction requires an ad-
vanced simulatioh, which was performed using commercial software [16]; we obtained: L =

1643 mm, W=212mm, g=1mm, /=155 mmand w= 3.8 mm.

By comparing these values to the proposed design parameters in Section 2.4.2, we find only

one difference: the length of the radiator is increased from 16.2 mm to 16.43 mm.

Finally, to connect the pin of a coaxial cable to the feedline, perfect soldering is indispens-
able. We found empirically that by tapering the feedline at the connection point with SMA
pfobe (Point A in Figure 2.6), we can achieve better matching and consequently lower RL.
This tapering, shown in Figure 2.7a, ensures that the current distribution over the width of

the feedline is monotonic.

2.4.4. Array Fabrication

To fabricate the array antenna, we put several single elements beside each other with the
appropriate spacing. As we already discussed, for the best performance, maximum steering
capability and diminishing grating lobes in the visible area, a spacing of A¢/2 is recom-

mended. For 5 GHz operation, this value is 3 cm. Figure 2.7a depicts the layout of the four-
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element array based on design parameters calculated in Sections 2.4.2 and 2.4.3. To make
the array, based on the available facilities in the laboratory, the following procedure was

established by Mr. Patrick LaRochelle, a technician at COPL:

Step 1: The array was imprinted with black ink on one side of the substrate on the cop-
per layer. To do this, Figure 2.7a was printed on photo-paper and then ironed over the sub-

strate; the ink was transferred onto the copper.

Step 2: The whole substrate was immersed in ferric chloride to remove the unwanted
copper layer around the antennas and feedlines. We immersed the copper board in the solu-
tion and agitated it until the etching action was completed. Ferric chloride normally can
etch up to a maximum of 100 g of copper per liter of solution. The etching process can be
sped up by heating the solution to a temperature no higher than 55° C (135° F). Before the
immersing process, we protected the copper of the rear side of the substrate (the ground

side) by wrabping it in scotch tape.

Step 3: After completing the etching process, the scotch tape was removed from the ground

layer, and SMA connectors were soldered on.

2.4.5. Experimental Results for our Designed and Fabricated

Array

Scattering parameters, also called S-parameters, describe the performance of linear, time-
invariant microwave networks. An N-port microwave network has N arms into which pow-
er can be fed and from which power can be taken. In general, power can get from any arm
(as input) to any other arm (as output). We also observe that power can be reflected by a
port, so the input power to a single port can partition between all the ports of the network to
form outgoing waves. S-parameters are conceptually simple, analytically convenient and
capable of providing detailed insight into a measurement and modeling problem. A single
antenna can be considered as a one-port microwave network and the S;; parameter denotes
its input reflection coefficient. Lower S| results in lower RL that increases the efficiency

of the antenna.
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Figure 2.8 shows the measured and simulated traces of S;; for the designed microstrip an-
tenna. For simulation, we observed the impact of carrier frequency on the input impedance
of the antenna and consequently we calculated the S;; parameter. The measurement has
been taken with an Agilent RF network analyzer with model number of E5070B after a full
electrical calibration. The result shows an acceptable. agreement with simulation results.
The slight difference between the center frequencies may come from the design uncertain-
ties and manual fabrication. The S;; depth of this home-made design at the center fre-

quency, -17 dB, shows it is successfully matched for single-frequency operation.

S1, [dB]

Measurement
i ' Simulation

| | | I I I

45 46 47 48 49 5 51 52 53 54 55

8 S

Frequency [GHZz]

Figure 2-8: S;; measurement (red trace) and simulation (blue trace) comparison for home-made an-

tenna.

Figure 2.9 shows the radiation pattern measurement result for a singlefelement rectangular
antenna designed and fabricated as described previously. Considering the two-layer design,
a 180° angular range covered the front side of the antenna. The other 180° angular range,
facing the rear side of the antenna, does not radiate as it is grounded. The pattern measure-
ment setup was based on a rotating transmitter and a fixed receiver. We fixed a single

transmitting antenna, on a plate connected to the shaft of a stepper-motor. Another single



35

antenna (similar to the transmitter element) was used for reception. Both transmitter and
receiver have the same height (1 m) from the floor. We placed the transmitter and receiver
antennas at 1 m distance to meet the far-field range criterion and to reduce the impact of
reflections. We rotated the transmitter side for 180 steps covering 180° of the front side of
the antenna; for each step the received RF power in the receiver was measured by a signal -
analyzer and saved. The speed and delay time for each rotation step were chosen empiri-

cally in support of stable power acquisitions.

The asymmetry in the pattern is normal for microstrip antennas and has been reported in
[18] and [20] as one of the patch drawbacks. Although the pattern in Figure 2.9 is not per-
fectly omnidirectional, the array formed from multiple copies of this antenna can be used
for our beamforming experiment. It is worth mentioning that for obtaining the array factor,
we normalize the measured array pattern to the single-element pattern, therefore we can get
rid of the asymmetry and directionality, seen in Figure 2.9. Some large ripples on the pat-
tern are noticeable. These ripples may come from the imperfect properties of the anechoic

chamber we manually set up around transmit and receive antennas.
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Figure 2-9: Pattern measurement of a single element home-made microstrip antenna.
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2.5. Conclusion

In this chapter we introduced definitions and the array formulations that we will use to de-
scribe the PAA parameters. Afterward, we briefly explained the transmission line model for
designing a single-element patch antenna operating at a single frequency. Then by using
this model the appropriate antenna was designed and matched for our specific application.
Finally, by measuring the radiation pattern and S;; parameter, we examined the radiation
and matching qualities, respectively. In the last chapter, we use this array antenna as a part

of ROF link to demonstrate the optical null-steering beamforming.
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Chapter 3

Optical Beamforming Techniques

3.1. Introduction

Array antennas are becoming increasingly important in mobile communications because
they allow for dynamic and fast shaping of the antenna radiation diagram without the use of
mechanical parts. The flexibility in designing the shape of the radiation pattern depends on
the number of degrees of freedom available in the array: amplitude and phase control allow

for a more flexible design of the radiation pattern than phase alone.

Drawbacks for widespread application of all-electronic control of the amplitude and phase

of antenna elements include cost, complexity, size, weight, loss, and susceptibility to ¢lec-
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tromagnetic interference. Photonics holds great promise for alleviating these problems, and
enables the use of antenna remoting and optical signal processing. So-called true time delay
optical beamformers feature wideband operation with flat frequency response, potentially
limited only by the bandwidth of photodetectors and modulators. However, for low band-
width applications simpler techniques based on phase manipulation may be of interest.
Most of these optical beamformers, including our proposed optical null-steering beamfor-
mer, are based on FBG technology because of the ease in integration with ROF link and

low-cost manufacturing.

In this chapter, first we briefly introduce a FBG and some of the associated definitions that
we will need to describe our research. We review some previous research on optical beam-
forming and discuss their performance. Then the null-steering beamformer which requires
independent control over the phase and amplitude is introduced. We first describe the con-
cept, the design and its evolution. By comparing simulation and measurement results, we
demonstrate the feasibility of our design and we experimentally study the effect of this
beamformer on signal quality. For that purpose, we observe the transmission quality of an
IEEE 802.11a signal, as one of the most sophisticated modulation formats commonly used
for WLAN applications. Lastly, the impact of beam squint on the radiation pattern will be

simulated and discussed.

3.2. Fiber Bragg Grating Technology

A FBG is an optical fiber in which the refractive index in the core is perturbed forming a
periodic or quasi-periodic index modulation profile. A narrow band of the incident optical
field within the fiber is reflected by successive, coherent scattering from the index varia-
tions. The maximum mode coupling or reflection occurs when the Bragg condition is ful-

filled, as [22]

Ay =2n,, A (3.1)

where 4, is the Bragg wavelength, n,, is the effective modal index and A is the perturba-

tion period.
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The refractive index profile of the grating may be modified to add other features, such as a
linear variation in the grating period, called a chirp. The chirp has the effect of broadening
the reflected spectrum. In this case, the Bragg wavelength will change along the fiber fol-
lowing the change in the grating period. A grating with a non-zero chirp has the property of
adding dispersion, meaning that different wavelengths reflected from the grating will be
subject to different delays. This property is used in the development of delay lines for PAA

systems and dispersion compensators as well.

If the strength of the index modulation in a grating is constant over some length, and sud-
denly drops to zero outside that range, the reflection spectrum exhibits side-lobes which
may be disturbing sometimes. They can be largely removed with the technique by apodiz-
ing the grating, i.e., the strength of the index modulation is smoofhly ramped up and down
along the grating. Of course, one then needs to increase the overall length of the grating to
achieve a certain peak reflectivity. In an apodized fiber Bragg grating, there is a tradeoff
between optimum side-lobe suppression and maximum reflectivity for some restricted grat-

ing length and a given maximum strength of index modulation.

FBGs are created by inscribing or writing the periodic variation of the refractive index into
the core of an optical fiber using an intense ultraviolet (UV) source, such as a UV laser,
thanks to the photosensitivity characteristic. Photosensitivity means that exposure of UV
light leads to a permanent rise in the refractive index of certain doped glasses. Typical val-
ues for the index change are ranging between 107 to 107, depending on the UV exposure
and the dopants in the fiber. By using techniques such as hydrogen loading, an index
change as high as 107 can be obtained. Fiber gratings are nowadays usually fabricated by a
variant of the transverse holographic method [22]. By exposing the fiber to a UV interfe-
rence pattern from the side, the pattern is printed into the fiber as seen in Figure 3.1. Only
the core is usually doped (for example with germanium), and consequently the grating is

only formed in the core and not in the cladding.

Because a FBG can be designed to have an almost arbitrary, complex reflection response, it
has a variety of applications. In telecommunications, the use of FBG-based devices is very
popular since they have low insertion loss, allow low-cost manufacturing and are compati-

ble with existing optical fibers used in telecommunication networks. Probably the most
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promising applications have been dispersion compensation, wavelength selective devices

and tunable delay lines for beamforming applications [22].

UV beam UV beam

Cladding

AN

Photosensitive core

Figure 3-1: The transverse holographic method for writing fiber gratings. Two coherent UV beams
produce an interference pattern in the fiber. The periodicity of the resulting grating is dependent on

the angles of the incident beams.

3.3. Optical Beamforming Methods

The first optical beamforming approaches were based on a number of uniform FBGs writ-
ten at different positions; the distances between gratings determine the beam pointing direc-
tion of the array antenna [23], [24]. This system assures broadband operation, but it only

allows a discrete number of steering angles.

Subsequently, it was demonstrated that chirped fiber Bragg gratings (CFBG) can produce a
linear phase change of the modulating signal at microwave frequencies, and the slope of the
phase response can be continuously modified by tuning the wavelength of the optical carri-
er [25], [26]. Broadband operation and continuous spatial scanning properties have been
demonstrated with these systems. However, these systems are very complicated, as they
need the use of a tunable laser source (TLS) and tunable bandpass filters that should be

tuned synchronously.

To eliminate these disadvantages, a variable time-delay line has been used for a PAA sys-
tem, which applies strain perturbation at different positions of a uniform FBG to induce dif-

ferent time delays via tuning different position of the grating [27]. The system operates at a
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single fixed optical wavelength, but the minimum delay step is limited to about 10 ps by the
minimum available distance between the adjacent perturbations. This solution was mod-

ified in [28] and the minimum delay step was reduced to 1 ps.

3.3.1. TTD Beamforming Using a Fiber Grating Prism

Reference [29] presented, for the first time, measured data on a FBG-based, TTD processor
for beamforming in both transmit and receive modes. Measurements were taken over a 3.5
GHz bandwidth. The system level diagram for the beamformer is shown in Figure 3.2. For
the transmit mode of operation, one TLS is externally modulated with an EOM. This mod-
ulated light feeds a group of N single-mode fibers through an equal-path 1:N power divider.
The receive EOMs are not used in the transmit mode, and optical circulators are used to
direct the modulated signals to the fiber grating prism (FGP). Each fiber includes a spatially
distributed array of FBGs which collectively form the FGP. The different peak reflection
wavelengths of the different gratings are within the tuning range of the laser. The 1:N split-
ter includes a N-fold set of integrated 3 dB directional couplers that gather the back-
traveling light from the wavelength selective gratings. Reflected light is time-delayed in
accordance with the particular grating which is addressed based on the selected wavelength.
For the transmit mode, a second set of equal-length fibers transports the N coupler outputs
to a set of PDs located to feed the antenna elements with delayed microwave signals. In the
receive mode an unmodulated TLS feeds N optical channels. The received microwave sig-
nals are directed to a set of N EOMs. The modulated optical signals are then directed to the
FGP via the optical circulators. These optical signals are summed together and sent to a PD
for recovery of the collective microwave signal. Wavelength shift in the TLS selects a de-

sired outgoing as well as incoming beam direction.

Figure 3.2 also illustrates the spatial layout of the fiber prism for the case of a four-element
array (N=4). Here, the main lobe of the PAA can point in any one of five discrete directions
(M=5) as selected by the laser wavelength. In [29], the experimental result for time delay
response of the system for the case of N =3 and M = 4 is reported for the maximum steer-
ing range of 120° within a 3.5 GHz bandwidth. However, they did not measure or simulate

the radiation pattern.
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_ Figure 3-2: Integrated transmit/receive optical beamforming system illustrating the spatial layout of
the Bragg gratings for the FGP, shown for the case of a four-element array with five discrete steer-

ing angles [29].

The two main considerations in analyzing the described system are power budget and posi-
tioning error. Regarding system loss, the laser power reaching the PDs in Figure 3.2 is re-
duced by several factors in both transmit and receive mode of operation. The FGP intro-
duces a loss 1-R, where R is the reflectance of the selected grating. The reflectance of the
gratings can be greater than 99%, while the M-1 unselected gratings per channel do not in-
troduce appreciable optical loss, typically less than 0.5 dB. The major loss mechanisms are
the couplers (6 dB round-trip), the 1:N splitter (10 Log N dB) and the circulator (approx-
imately 1 dB per direction). Note that the receive mode experiences additional loss due to a
second N:1 splitter. There are also two EOM modulators that typically introduce excess loss
of approximately 7 dB. Splices, connectors, isolators, polarization control, and the like will
add additional loss to the system. The total loss is the sum of the above, and the RF loss is
twice the optical loss. However, loss does not cause serious problems since the system is

fiber-based and optical amplifiers can be incorporated into the design to compensate for the
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insertion losses in the system. On the other hand, the positioning accuracy of the FBGs on
the fiber limits the delay accuracy. A delay error causes the actual steer angle to differ
slightly from the design goal. A positioning accuracy of +£1 mm corresponds to 1.4° and

2.8° direction error, at 2.5 GHz and 5 GHz respectively.

3.3.2. TTD Beamforming Using CFBG and Multiwavelength

Tunable Laser

In [26], the authors presented theoretical and expérimental results of the phase and ampli-
tude distributions of a microwave modulating signal when the optical carrier is reflected by
a CFBG. The signal of a multiwavelength laser source is amplitude modulated by an EOM
and after reflection in a linearly CFBG, the different wavelengths are demultiplexed to
drive the elements of a PAA. The signal is distributed to the antenna elements through an
1:N power splitter and subsequently filtered by a set of tunable bandpass filters, as it is illu-
strated in Figure 3.3. The corresponding amplitudes and phases arising from the reflection

at the Bragg grating determine the radiation pattern of the PAA.

Each wavelength of multiwavelength laser source carries the signal for a specific element
of PAA and by taking advantage of the chirp of CFBG, each wavelength experiences dif-
ferent amount of time delay when it is reflecting in CFBG as shown in Figure 3.3. Two

consecutive array elements are fed with two different optical wavelengths @, and o, ,, and

the resultant steering angle can be written in terms of the grating time delay as:
. c c
sm(&)z E(r(w,)—r(a),_] )= EAT (3.2)

where d is the distance between the array elements, ¢ is the velocity of light, 7(®,) is the
time delay experienced by the signal on wavelength @, and At is as depicted in Figure
3.3. This equation is another version of (1.2). The time delay (7 ) of a fiber grating depends
on the grating chirp. The function 7(w) is linear in gratings with a linear chirp; in that case,

the beamforming network can operate by distributing a set of equally spaced optical fre-
quencies to the array elements and the steering angle can be continuously controlled by the

frequency steps.
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Figure 3-3: Schematic of a PAA steered by a CFBG. Different optical wavelengths are routed to the
radiators through a WDM svstem [261.

Unlike [29], this system provides continuous beamforming. In [26], the authors reported the
measured time delay resporise for a maximum steering range of 180° for an 18 GHz band-

width. They also simulated the resulting radiation pattern for a 32-element PAA.

The main considerations for the described system are the need for a multiwavelength TLS
and the vulnerability of DSB modulation to dispersion. The main difficulty in of this sys-
tem is that one needs to provide a multiwavelength source in which the wavelengths should
be tuned simultaneously with equal increasing or decreasing wavelength spacing. For a
TTD system with N channels, for example, N tunable laser sources with the wavelengths
controlled by a programmable wavelength controller should be used. Furthermore, this sys-
tem requires tunable optical filters to select each wavelength before its respective PD.

These make the whole TTD system bulky, sensitive and very expensive.

In the detection process, there are two signals arising from the beating between the optical
carrier and each sideband; the optical signals interfere in order to yield the detected signal

at the microwave modulating frequency. It is well known that chromatic dispersion can in-
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troduce RF signal fading when the two sidebands become out of phase [26]. Substituting
the grating phase response by its second-order Taylor series, [26] obtained that the detected
RF signal drops to zero when the time delay difference between both sidebands is an integ-

er value times the period of the RF signal, which corresponds to the following modulating

1 c
- }_ 33
S A, V2D (3:3)

where D is chromatic dispersion of the CFBG. This phenomenon imposes a limitation on

frequency £, ,:

the operational bandwidth. The limitation arising from signals beating can be overcome by
using the single side band (SSB) modulation technique, at the expense of another increase

in system complexity and cost.

This design was improved later by [30], using multichannel CFBG to reduce both the grat-
ing length and laser source tuning range. Reduction of laser tuning range enables this sys-
tem to operate in a WDM configuration, and to replace the tunable optical bandpass filters

with an AWG.

3.3.3. TTD Beamforming Using Tunable CFBG

In [28], a continuously variable delay line for PAA applications is presented. The proposed
delay line operates at a single wavelength and is based on a properly designed linear CFBG.
Continuous delay is achieved by changing the temperature or strain along the grating re-
gion. The setup of the proposed TTD unit employing a CFBG delay line is illustrated in
Figure 3.4. The laser is externally modulated by a microwave signal through an EOM. The
modulated light feeds a group of N single mode fibers through an equal path 1:N power di-
vider. It is worth mentioning that this architecture is not based on a WDM approach and
each channel is transmitted on a separate optical fiber. Therefore, if the N-element PAA
location is far from the central unit, we need to connect the PAA to the beamformer with N
parallel fibers. For each branch, the modulated wavelength is guided through an optical cir-

culator to a wideband CFBG with a central wavelength of 4,. Each CFBG is properly ac-

tuated in strain or temperature and the actuator system is controlled by a simple feedback
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loop. The imposed perturbations in every line will be set by the controller in order to pro-
vide the distribution of phases needed to achieve the desired radiation pattern of the anten-
na. The N delayed modulated lights are then detected by high-speed amplified photodetec-
tors and sent to feed the antenna elements. In a PAA, the steering angle corresponding to
the main lobe of the array antennas (6y) can be calculated from (1.2). In this system, consi-
dering a single branch, continuous time delays Az are obtained by uniformly perturbing
the grating so that the optical carrier is reflected at different spatial locations along the grat-
ing region, leading to different traveling times for the signal. Thus, the time delay for each

channel is determined by the spectrum shift A4, induced by the applied perturbation.

Linearly Chirped Grating

=1
] Array Antennas
A <]
<5 | <
Laser Source Modulator
RF gl oo
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Optical Carrier {
Signal . & g Bl
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Generator Splitter B Photodetectors
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~~____1 Actuators

Controller

Figure 3-4: Configuration of the beamformer based on tunable CFBGs for a four-element array [28].

If a linear chirp is chosen, the relation between the resonance position and the wavelength

shift (A4,) is linear, as is the round-trip delay. If the group delay is linear enough, then the
time-delay (A7 ) depends on the CFBG mean dispersion (D,,) and on A4, according to the

approximated relation of:
At =D, A, (34)

It is well known that the relation between a temperature variation (A7), a strain change

(Ag) and the grating spectrum shift (A4, ) is [31]:
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Ad, = (K, Ae+ K, AT).A, (3.5)

where K, and Ky are, respectively, the strain and the thermal normalized responsivity.
Based on this line of argument, the linearly chirped grating provides a linear delay differ-

€nce.

Similar to [26], this system provides continuous beamforming. In [28], the authors reported
the measured time delay response for a maximum steering range of 110° for a 30 GHz

bandwidth. They did not measure or simulate the radiation pattern.

The two main considerations in analyzing the described system are component issues and
positioning error. On one hand, considering the number of FBGs in the link, the same num-
ber of optical circulator is required which increases the price and volume of the system. For
instance an eight-element PAA will need eight optical circulators. On the other hand, em-
ploying SSB modulation to overcome dispersion interaction (as discussed in Section 3.3.2)
increases the link complexity and cost as well. Furthermore, a delay bias error can exist be-
cause of the limited positioning accuracy of the FBGs on the fiber and the variation of the
fiber feedings for different channel. However, this uncertainty can be calibrated and com-

pensated for each channel by the FBG delay lines.

Reference [32] presented a beamformer using a similar concept and compatible with WDM
configuration by employing a multiwavelength laser source and just one tunable CFBG as
shown in Figure 3.5 for a five-element PAA. The light of the multiwavelength laser is ex-
ternally modulated by a microwave signal through an EOM. The output of the laser source
has five fixed wavelengths with identical wavelength spacing which makes it compatible
with WDM configuration. The modulated light is sent to the tunable CFBG through an opt-
ical circulator, and then reflected by the tunable CFBG. The reflected light feeds a group of
single-mode fibers through an equal-path 1:N power divider. Each channel includes a band-
pass filter whose center wavelength coincides with one of the N wavelengths of the laser
source. The different time delays are obtained in accordance with the particular carrier wa-
velengths for N different channels. The delayed modulated light is then detected by N am-
plified PDs to feed PAA elements. The time delay difference is linear with the chirp rate
and the beam direction can be tuned by changing the chirp rate of the CFBG.
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WDM configuration |32].

3.4. Independent Optical Control over the Phase and
Amplitude

For low modulation depths, the optical baseband equivalent description of the electric

field, £(¢), of a DSB modulated optical signal can be approximated by the sum of three

spectral components. After filtering the signal with an optical filter, we can write the elec-

tric field as:

E(t)=Ae' + Ag e/ Tomin) 4 gy o/ Comtt o) (3.6)

where w,,. is the RF modulation frequency, 4¢ and ¢¢ are amplitude and phase of the opti-

cal carrier, As;, ¢si, Asy and @ are the amplitudes and phases of the lower and upper mod-
ulation sidebands. In the most general case: As; # Asy, but if the filter amplitude is constant
over the spectrum band, we can take Ag, = Asy = As. Thus, after photo-detection, the de-

tected RF voltage signal at w,, is proportional to:

V/e/-' OCA('AS COS(¢/, - ¢U )-COS(C‘)R/«‘ + ¢/‘ + ¢(/ ) (3'7)
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= ———== represent half the cumulated phase difference be-

where ¢, = 5

¢SU2_¢C and ¢L ¢(‘ _¢SL

tween the sidebands and the carrier due to the filter phase response. Note that ¢, and ¢; can

be written as:

é, =% [7(0) do (3.8a)

é, =3 t(w) do (3.8b)

where 7(w) is the group delay response of the optical filter. With fiber dispersion, (3.7)

transforms into [33]:

Lo _ , ,
Vi o< cos| ¢, — @, +4—ﬂc% @ py- 'COS(wRF[+¢L +4,) (3.9)

where D is the dispersion, L, the fiber length, ¢ the speed of light and A4, the optical carrier
wavelength. According to both (3.10) and (3.12), ¢, +¢,, appears in the signal phase and
¢, — ¢, appears in the signal amplitude. Therefore by adjusting separately ¢, and ¢, inde-

pendent control of signal phase and amplitude is possible. Note also that by a wise selection

of ¢, —¢,, one can compensate for chromatic dispersion of the ROF link. Therefore, the

independent control over ¢, and ¢, is key for independent setting of amplitude and phase

for the signals feeding the array element.

For a single channel, the proposed structure of a novel beamformer is sketched in Figure
3.6. This solution was proposed by Mr. Marco Sisto, a PhD student at COPL [34]. The
beamformer is physically formed by two FBG-based optical filters, one with positive chirp
and the other with negative chirp (the absolute chirp factor is similar). We will refer to the
gratings as FBG, and FBGy, because they are used to adjust ¢, and ¢y respectively. Recal-
ling (3.8a) and (3.8b), we note that the values of @y and ¢, are each defined by the inte-

grated group delay, respectively, in the lower and upper portion of the spectrum, between
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the modulation sidebands and the optical carrier. By stretching or controlling the tempera-
ture of the gratings, their delay response can be shifted, thus the values of ¢y and ¢ can be
tuned. Since the actuators work independently on two different gratings (FBG, and FBGy)),

the control over ¢y and ¢ will be independent.

RF signal
‘ generator
Laser DSB Modulator
Single Channel Beamformer ‘

Positive chirp FBG (Grating L)

Thermal or
stretching
controller

4 port
circulator

BRRRRNARINNNI

Negative chirp FBG (Grating U)

to ROF
¥ link

Figure 3-6: The single-channel architecture of the proposed novel optical beamformer.

3.4.1. ¢y and ¢, Control based on Gires-Tournois Filters

To design the FBG, and FBGy gratings, we used a Gires-Tournois cavity that is a Fabry—
Perot etalon with a 100% back-reflector. This is an all-pass filter operating in reflection,
that has spectrally periodic group delay variations with a free spectral range (FSR) fixed by
the cavity length. In order to tailor the shape of the group delay response of the filter, lat-
tice-coupled cavities [35] might be implemented by adding more reflectors with the same
relative spacing and conveniently designed reflectivities. The reflectors may be made by
superimposed CFBGs, so N superimposed CFBGs form N-1 Gires-Tournois fiber Bragg
grating coupled cavities (GT-CCs). The beamformer that we propose is physically formed
by a pair of these GT-CC filters (Figure 3.6) and we call the whole system a Gires-Tournois
beamformer (GT-BF).
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Figure 3-7: Theory of operation of the GT-BF for one optical wavelength: a) The GT BF is com-
posed by two GT-CCs with 25 GHz FSR with conveniently designed delay curves. The delay peaks
from each GT-CC are centered on two modulation sidebands. The peaks are repeated periodically

every 25 GHz. b-d) Amplitude and phase of the antenna signals are controlled by adjusting the rela-

tive position of the peaks.

The delay response of each GT-CC over one FSR is shown in Figure 3.7a: the FBG chirp
causes a linear increase of the GT-CC delay response over the FSR which adds up to a de-
lay peak at the cavity resonance frequency. The group delay is additive, and because the
cascaded GT-CCs have chirp with the same absolute value but opposite sign, the total delay
is flat over the FSR except for the two peaks at the resonance frequencies of the two GT-
CCs as shown in Figure 3.7b. The peaks can be shifted independently in order to increase

or decrease the value of the integrals in (3.8a) and (3.8b). When the peaks are shifted sym-
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metrically (Figure 3.7c) with respect to the optical carrier, the first cosine term in (3.9) is
kept at unity and only the signal phase is changed. When the peaks are shifted non-
symmetrically (Figure 3.7d), the amplitude can be changed while keeping the phase con-

stant.

a) Design of GT-CCs and Simulation Results

In the following we briefly describe how the GT-CCs has been designed; more details can
be found in [15]. As already explained, the GT-CCs should have a 25 GHz FSR to be com-
patible with DWDM systems. The cavities are physically realized using superimposed
CFBGs, shifted by a distance L ~ 4 mm. This fixes the FSR following the well known Fa-

bry-Perot relation:

FSR = (3.10)

2n L

where ¢ is the speed of light and »n, is the group index. When using a lattice-coupled de-

sign, two or more cavities are appended by adding more superimposed CFBGs. Then, the

total coupled-cavity length is mL,  where m is the number of coupled cavities. The greater

the value of m, the easier it is to tailor the delay and amplitude response. Also, note that the
values of ¢ and ¢, are limited to a maximum range of mzx, which allows for a maximum
signal phase shift of 2mz. However, the extreme values of ¢y and ¢, require maximum
shifts of the delay peaks, which is impractical for a single cavity design. So, m>1 is needed
for (0, 2r) signal phaée shift. The maximum value of m is fixed by other constraints, such
as coupled-cavity spacing and maximum grating length, as explained later. We designed the
GT-CCs using three coupled cavities (four superimposed CFBGs) with a total length of 12

min.

The CFBGs have a reflection bandwidth which covers several FSR. Because they are dis-
tributed mirrors along the grating physical length, each FSR is placed at a different physical
position along the grating length. The FBG chirp C is constant so the resonant frequency

spacing, or the cavity spacing, is constant and equal to:
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Figure 3-8: Design of the optimum GT-CC. Blue lines represent the design target: amplitude re-

sponse (a). normalized delav response ( b) and resultant phase resnonse (c).

We consideredd s, > mL_, avoiding spatial superposition between the cavities. However,

drs; cannot be made arbitrarily large because the design must satisfy the relation:

Nd g < Ly (3.12)

where N is the number of FSRs covered by the grating and Lpgs the maximum grating
length. Chirped gratings can be written in the fiber using a chirped phase mask and the
mask length limits L,,; to a maximum practical value of 14 cm considering the lab facili-
ties, i.e. the available phase masks and fabrication techniques. So, using a phase mask with
a 0.1 nm/cm chirp, FSR =25 GHz and n.y= 1.46, we have d,g = 1.37 cm and we can ac-
commodate eight FSRs along an 11cm-long grating, well within L, . This value of d,g

also respects (3.12) and justifies the choice of designing the GT-CCs with three coupled

cavities.
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Figure 3-9: Map representing the normalized amplitude (a) and wrapped phase (b) response of the
GT-BF as a function of the shift of the delay peaks from the reference position centered on the

modulation sidebands.

After fixing the number of cavities, we designed the shape of the delay response of the GT-
CCs by tuning the FBGs. The phases of coupled cavities are fixed and identical. The design
method is divided into three steps: first we define a target group delay response. After-
wards, we calculate the delay response of a bulk coupled cavity filter using a polynomial
ARMA model [35] and we apply an optimization algorithm on the reflectivity values in or-
der to approximate the target delay response. The target delay that was defined for the peak
centered on the left modulation sideband is shown by the blue bold lines of Figure 3.8b. To
ensure the linearity of the GT-BF phase response over a 100 MHz bandwidth, the delay
peaks must be flat over a band of at least 100 MHz around the sideband for every position
of the delay peak. Also, the delay peak, which controls the value of ¢, must not affect the
value of @y and vice versa. In addition, the resolution on the position of the peak is finite
and fixed by the temperature or stretching resolution; therefore, a lower and wider peak al-

lows for more phase shift resolution. We defined the target delay curve with a flat zone




55

width of 2.5 GHz and a minimum value in the region between the optical carrier and the

right sideband to ensure maximum decoupling between ¢y and ¢;.

The simulations of the phase and amplitude response of the GT-BF are shown in Figure
3.9a and 3.9b respectively. These simulation results are based on modeling and optimizing
a thin film filter with three coupled cavities. Simulation was performed using a Z-transform
model of the three-cavity GT-BF. The model allows calculating the response from the val-
ues of cavity mirror reflectivity and cavity phase (small variations over length). All cavities
were assumed to have the same phase (exactly the same length). A genetic algorithm was
used to find the reflectivities of the three mirrors forming the cavities. The fourth mirror is
assumed to have 20 dB reflectivity (four mirrors are needed for three coupled cavities). The
genetic algorithm calculated these reflectivities as (from strongest to weakest): -13.4

dB, 8.35 dB and 1.58 dB.

In Figure 3.9, at the (0, 0) GHz position, the delay peaks are centered on the modulation
sidebands. Moving the gratings position along the secondary diagonal (line A-B) of these
maps, from (-1.2, -1.2) GHz to (1.2, 1.2) GHz, allows for more than 2.37 phase shift of the
RF signal with variations in amplitude below 0.5 dB. Amplitude variations are due to the
amplitude response of the GT-CCs is not being perfectly flat. To get exactly constant am-
plitude, the working point must be moved on the isolines shown in Figure 3.9a. Phase is
constant and amplitude varies when moving the gratings along the main diagonal (line C-

D).

b) Experimental Measurements: Single-Cavity GT-CCs

Superimposed CFBGs can be written in fiber using a chirped phase mask and exposing to
UV light the same section of fiber again and again. However, this method is not practical
for more than two superimposed FBGs, because it is hard to precisely couple the cavities.
The three-cavity GT-CCs can be more easily obtained using a phase-sampled phase mask,
which also provides precise identification of the position of the cavities [36]. At first, we
did not have this complex phase mask, so we measured and simulated the performance of a
single-cavity GT-BF, obtained by writing two superimposed CFBGs written with a stan-
dard phase mask, in order to prove the validity of our simulations. The FBG-based filters
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for the measurement was written on UVS-INT fiber (without hydrogen) with a chirp factor
of 0.5 nm/cm, a cavity length of 4 mm and a reflectivity about 30 dB. Each grating was 40

mm long and showed less than 3 dB loss.
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Figure 3-10: Measured insertion loss and group delay of the single-cavity GT-CCs.

The measured insertion loss and group delay response of a single-cavity GT-CC over sev-
eral FSR are shown in Figure 3.10. The simulated phase and amplitude maps as a function
of the position of the delay peaks are shown in Figure 3.11a and 3.11b and the measured
behavior as a function of grating temperatures is shown in Figure 3.11c and 3.11d. The
measurement setup for this experiment is depicted in Figure 3.12. The light of the laser
source is modulated by a MZ modulator biased at quadrature point with 5 GHz sinusoidal
RF carrier and after optical amplification it passes through the single-channel beamformer.
Note that the tunable laser is used to have more freedom in selecting one specific peak pair
in the GT-BF response, but its wavelength is fixed along all measurements. We pro-
grammed LabVIEW to automatically control the setup: the software sends commands to the
thermal controller to fix the temperature of the gratings. After a few seconds for thermal
stabilization, the real-time oscilloscope is used to acquire an image of the detected sinusoi-
dal signal after being filtered by the GT-BF. The oscilloscope is synchronized with the RF
signal generator and triggered on a 10 MHz reference clock, also given by the RF signal
generator and in a fixed relation of phase with the 5 GHz tone. On the oscilloscope, the 5

GHz trace appears stable and is acquired and saved on the computer. For recording the sig-
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nal, an averaging factor of 256 was applied. We next set switches to exclude the laser and
the detector from the circuit; the GT-BF is fed with a test signal coming from the optical
network analyzer which is used to measure the optical delay of the GT-BF. With this
second measurement, we can ensure a proper map of the temperature settings to values of
shifts of the delay peaks, so that we can calculate amplitude and phase maps as a function
of the actual frequency shifts of the delay peaks. The timing management and measurement
synchronization were two of the most important issues in this setup. For instance, thermal
stabilization of the filters and the transient time of switches should be respected. The ther-
mal stabilization time delay value depends on the temperature controllers, temperature tun-
ing steps and the structure of heating facilities: for a step of 0.2° in this setup, a delay of 10
second has been applied. All the data is saved on a computer and post-processed using
MATLAB code to calculate the amplitude and phase maps shown in Figure 3.11c and
3.11d, where they are compared with the simulation maps. The same setup can be used to
measure the performances of the filter with OFDM signals, as described in the Section

3.5.2.

As anticipated from the design process, one cavity does not allow for 27 phase tunability:
maximum simulated and measured phase tunability is about 1.6z, Furthermore, perfect am-

plitude control for each desired phase value cannot be achieved.

c¢) Efforts towards a Multichannel Solution

Encouraged by the good agreement between measurement and simulation results for the
single-cavity GT-CC, and considering the simulated amplitude and phase tunability of a
three-cavity GT-CC, the next step clearly would be to fabricate a three-cavity GT-CC. Fur-
thermore, due to the spectrally periodic phase response of the Gires-Tournois filters, the
signal from a multiwavelength source can be processed by a single pair of gratings and then
demultiplexed to feed an antenna array. Because of the underlying chirp of the fiber grating
structures, the resonating fields at each wavelength are spatially separated along the fiber
axis and independent tuning of each signal can be obtained by the use of a segmented hea-
ter as represented in Figure 3.13 and previously used for chromatic dispersion compensa-

tion [37].
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Figure 3-11: Simulation and measurement of amplitude and phase maps for single-cavity GT-CC.

Our objective was therefore to develop a multichannel beamformer requiring a single pair
of GT-CC filters. This idea was based on the assumption that, with the right GT-CC design,
it could be possible to control all the RF signals for all the array elements by associating
each signal to different FSRs of the periodic response of GT-CCs to map each FSR to a dif-
ferent physical section of the GT-CC gratings by choosing the appropriate chirp and to con-
trol these sections independently. This was suggested by the fact that the minimum physical

length of a series of N coupled cavities with a given FSR is:

0.4
-0.6
0.8
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c

Lpgo =N—r 3.13
¢ " 2n FSR G139

where c is the speed of light, N is the number of FSRs and », is the fiber group index. For

a three-cavity design with the FSR of 25 GHz, L,. =1.2 cm.
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Figure 3-12: Setup for measurement of the amplitude and phase maps. Tunable laser: Phonetics tunics-BT;
Modulator: JDS OC-1; EDFA: JDS OAB1552+1FA0; Switch: JDS SB series; Thermal controller: ILX
LDT 5910B; Signal Generator: Agilent E4438C; Fast Oscilloscope: Agilent DSO81004B Infiniium, real

time, 10 GHz bandwidth; Optical Network Analyzer: Advantest Q7750; Bias Controller: YY-Labs Mini-
MBC-2; EVM Analyzer: Agilent E4440A; Amplified Detector: Agilent 11982A LCA.

Equation 3.13 is a simplification of a fnore complex reality because it considers the gratings
as localized reflectors. This is indeed a poor assumption: the cavities extend much more
than Lgpg because the gratings have non-zero length of interaction with the optical signal.
However, by choosing d g, >> L, it seemed possible to effectively separate the FSRs in
such a way that each FSR, and signal wavelength, was mapped in a different portion of the
GT-CC grating. Temperature or stretching control of each section of the gratings would af-
fect the signal wavelengths separately and independently.
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Figure 3-13: Proposed architecture for DWDM-ROF link using GT-BF.

To test this idea, we undertook simulations of a three-cavity GT-CC grating. With the
modulation index distribution obtained from the design step, we simulated a local variation
of temperature, that is, a variation of the average index in a specific location along the GT-
CC grating, and we tried to optimize the width and position of the perturbed zone to ob-
serve the shift of a delay peak while the adjacent peaks stay unchanged. Unfortunately, we
have not been able to shift a delay peak while keeping its shape and leaving unchanged the
adjacent peaks. We found that the shape of the delay peaks were very sensitive to very
small perturbations of the relative phases of the cavities. In our best designs, the delay
shape is conserved only if the average index perturbation extends over more than 2.5 cm,
but the adjacent peaks are heavily distorted. On the other hand, a perturbation extending
over a short grating region leaves the adjacent channels unchanged but strongly perturbs the
shape of the tuned channel. We tried other chirp values for the grating design, but gratings
with very low chirp must be very long to cover eight FSRs (for eight-channel beamform-
ing). The limit on the grating length is fixed by the maximum length of the phase mask,
which was 14 cm. Within this grating length, we did not find a satisfying design [15].
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3.4.2. A New Design Approach

In the following we briefly describe the new design approach; more details and a compre-
hensive study can be found in [15]. The simulated traces of reflectivity and delay for new
designs of the FBG, and FBGy are shown respectively in Figures 3.14a and 3.14b. These
designs are not based on coupled cavities anymore and do not provide multi-channel capa-

bilities. We will call this new device a discrete-gratings beamformer (DG-BF).
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Figure 3-14: Reflectivity and delay of the FBG,, (a) and FBGy (b) for DG-BF. In blue: design goal; in red:
actual grating. Green vertical lines represent the position of the optical carrier and modulation sidebands.

Red dotted lines limit the region of maximum flat response.

The gratings are designed to have a flat pass-band amplitude response with a bandwidth of
20 GHz, and a step-shape delay response centered respectively onto the lower and upper
modulation sideband of the optical spectrum. The gratings chirp is £0.25 nm/cm. The grat-
ings reflectivity must be lower than -20 dB in the out-of-band region, where the adjacent
channels are transmitted: the modulation sidebands of the nearest channels are 20 GHz on
either side of the carrier frequency of the reference channel. We imposed -20 dB reflectiv-
ity at 17 GHz to either side of the carrier frequency of the reference channel. The gratings
are 85 mm long. Their modulation index is first calculated using a layer peeling algorithm

[38], and then multiplied by an apodization window to limit the grating lengths.

We can simulate the amplitude and phase maps for this solution, in a similar way as we did

for the GT-CC design, by shifting the gratings delay and amplitude response shown in Fig-
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ure 3.14. The resultant simulation maps are presented in Figure 3.15a and 3.15b, where a
black quasi-rectangular zone gives the region of operation. The maximum phase tunability
range along the secondary diagonal of the map of Figure 3.15b reaches up to 2.5z, as
shown in Figure 3.18b. Furthermore, for each desired phase value, by tuning in the perpen-
dicular direction, we can attenuate the amplitude by 10 dB while keeping the phase amount
constant. These two features are similar to the capabilities of the GT-BF three-cavity simu-

lation (Figure 3.9) and provide all we need for a null-steering beamformer.
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Figure 3-15: Simulated amplitude (a) and phase (b) maps of the DG-BF.
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Figure 3-17: Measured amplitude (a) and phase (b) maps of the DG-BF.

a) Simulation.

b) Measurement.
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Figure 3-18: Comparison between phase retardation on the secondary diagonal: simulation (a) and meas-

urement (b).

The measurement results for these maps can be obtained, as we did for the single-cavity
GT-BF experiment, by shifting the gratings delay and amplitude response with temperature
controllers. Figure 3.16 shows the measured delay and reflectivity of the filters that we
have fabricated for this measurement. Figure 3.17 depicts the measured amplitude and
phase maps. The measurement setup is similar to the single-cavity GT-BF measurement
setup depicted in Figure 3.12. The only differences were related to the thermal actuator

hardware which was modified for the new length of gratings (for more details see Section




64

4.2.3) and the temperature controllers for which we employed two channels of multichannel

ILX LDC-3908.

Comparison between simulation and measurement confirms the general conformity and
good control over the amplitude of the signal for each desirable phase value in a 27 range in
a way that, by sweeping on the secondary diagonal from (-1.2, -3) GHz to (1, 1) GHz, we
can change the phase of RF signal by more than 27z and for each desired phase value. By
tuning in the perpendicular direction we can attenuate the amplitude by at least 10 dB while
keeping the phase amount constant. Figure 3.18 compares the phase retardation in simula-

tion and measurement.

a) The Multichannel Solution of DG-BF

The multichannel DG-BF has the configuration depicted in Figure 3.19 and is formed by
two cascaded chains of independent gratings: one chain for all the FBGy, filters and the oth-
er chain for all FBG;, filters. In each chain, the gratings have 25 GHz wavelength spacing in

conformity with the DWDM design goal.

The signal from- a multiwavelength source is modulated by a single DSB modulator so that
each wavelength carries the signal for a specific array element. Each wavelength is filtered
twice by separate FBGs, which are part of two chains of concatenated gratings before
- transmission over an ROF link. By adjusting the temperature or by stretching each FBG,
phase and amplitude of the signal on each wavelength can be controlled independently.
This solution minimizes the complexity of the design of filters and ensures that the chan-

nels are independent.

The main disadvantage of the proposed configuration is that the minimum length of each
chain is N times the length of a single grating (8.5 c¢cm), that is as much as 68 c¢cm for eight
channels! Such long chains of gratings, along with the actuators needed for controlling the
DG-BF, are not easy to package. Shorter gratings can be designed by increasing the chirp
and decreasing the delay step. However, decreasing the step reduces the phase tunability
range: in this design the minimum step height needed for a phase tunability range of 27 is

about 370 ps. Also, the windowing function used to limit the length of the gratings can be
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tighter, trading-off the smoothness of the delay response and the flatness of the amplitude

response.
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Figure 3-19: The multichannel DG-BF.

3.5. Effect of Beamformer Filters on Signal Quality and

Radiation Pattern

FBG-based devices are known to present an imperfect spectral response that introduces
some level of amplitude and phase distortion. Although the impact of these ripples on digi-
tal communication systems has been widely studied, little has been reported on grating pen-
alty in ROF systems. In addition, the proposed beamformer affects the relative phase of the
optical spectrum components, and the study of its impact on a complex signal like IEEE
802.11a/n is indispensable to prove the reliability of this null-steering beamformer in ROF
applications for indoor communication. In this section, we focus on one channel and char-
acterize this tunable FBG-based null-steering beamformer by performing error-vector-

magnitude (EVM) measurements.
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Furthermore, because this device is not true time delay, its bandwidth is limited by the
maximum allowable beam squint. We simulate the impact of this limitation on our system

and find the amount of error that it can introduce for WLAN applications.

3.5.1. IEEE 802.11 Modulation Format for WLAN Application

Considering the capability of the null-steering beamformer for multiple-input multiple-
output (MIMO) applications, the IEEE 802.11n compliant signal would be the best protocol
to transmit over this beamformer since it is the most common modulation format that sup-
ports MIMO techniques. Unfortunately, this standard was not well-established when we
started this project, so we instead check the effect of the beamformer using the IEEE
802.11a format, the established standard working in the 5 GHz band. It supports data rates
of 54,48, 36, 24, 18, 12, 9 and 6 Mbit/s [39].

IEEE 802.11a signal uses a 52-subcarrier orthogonal frequency-division multiplexing
(OFDM); multi-level quadrature amplitude modulation (QAM) is employed for modulating
data tones. OFDM is a multicarrier transmission technique used in applications related to
both wired and wireless communications. The OFDM technique divides the available fre-
quency spectrum into many closely spaced carriers, which are individually modulated by
low-rate data streams. The orthogonality between the carriers facilitates the close spacing
of carriers. The orthogonality principle implies that each carrier has a null at the center fre-
quency of each of the other carriers in the system while also maintaining an integer number

of cycles over a symbol period [39].

3.5.2. Experimental Verification of the Beamformer Effect on
Signal Quality

In order to experimentally verify the performance of filters, we generated and transmitted
the IEEE 802.11a signal with the highest possible data rate (54 Mb/s) over an ROF link: the
signals were composed of frames with a synchronization symbol, a channel-response train-
ing symbol, and a payload of 16 OFDM-symbols. In the standard, the maximum transmis-

sion rate is achieved using a 64-QAM format that is very sensitive to link noise and inter-

modulation distortion. Furthermore, the OFDM signals are characterized by a high peak-to-
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average-power ratio (PAPR), which increases the signal sensitivity to distortion. Narrow-
band signals such as IEEE 802.11a are mostly affected by the third-order intermodulation
distortion (ID3), because even-order distortion terms can be filtered in the RF domain. In

many ROF links, the optical modulator is the main source of ID3.

To verify the quality of the OFDM signal, EVM measurements were performed. The EVM

parameter is

2
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n
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where the vector r represents the inphase and quadrature coefficients of the transmitted 64-
QAM symbols and the vector z is the coefficient of the received symbols. The EVM is
equal to the ratio of the average power of the error vectors to the root mean square power of
the transmitted symbols without any errors. The IEEE 802.11a protocol imposes -25 dB as

the maximum allowable EVM value for error-free transmission.

To perform this test, we used a tunable laser source, a MZ modulator, the beamformer and
an amplified photodetector. The setup of Figure 3.12 was used for EVM measurements.
The RF input to the modulator was provided by a vector signal generator (VSG), and the
received signal was fed to a vector signal analyzer (VSA) for the EVM measurement. The
electrical back-to-back EVM measurement, with the VSG directly connected to the VSA,
was -48 dB. The optical back-to-back EVM measurement at the MZ output was -37 dB.
This EVM degradation is expected and arises from MZ third-order distortion. The MZ
modulator bias was set at the quadrature point with automatic bias controller. The bias con-
troller module works based on an optical feedback and an internal oscillator trying to lock
the operation point on the quadrature point. Due to the numerous measurement points re-
quired for a complete map, the whole measurement takes a long time: for the map of Figure
3.20a, a three-day measurement was made. Since the bias of the MZ modulator drifts in a

relatively short time (some minutes), using this automatic bias controller was indispensable.
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EVM measurement of single-cavity GT-BF: The position of the beamformer delay
peaks can be changed independently by using their respective temperature settings as we
have done to obtain amplitude and phase measurements. Then several different data frames
were generated and transmitted over the ROF link including the beamformer and we meas-
ured averaged EVM. The measured map is shown in Figure 3.20a. The EVM measurement
along the secondary diagonal is reported in Figure 3.20b. The solid straight lines in this fig-

ure correspond to the measured EVM level after the MZ modulator.
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Figure 3-20: Measured EVM response for the single-cavity GT-BF.

Strong attenuation of the signal amplitude (refer to Figure 3.11c) eventually degrades the
EVM, as is apparent in the lobes of Figure 3.20a; however in the zone of interest, the EVM
is much better than -25 dB and complies with the standard. In addition, the EVM measured
after the GT-BF is better than the EVM measured after the MZ modulator (solid straight
line), indicating that some compensation of the nonlinearity takes place. It has been re-
ported [40] that, by wisely manipulating the optical spectrum, some of the ID3 generated by
the modulator can be suppressed. For instance, fiber dispersion can change the relative
phase of different components of the propagating spectrum such that the received ID3 at the
fiber end may be less than what is measured at the modulator output. In the GT-BF case,
we believe that this results from the different amounts of group delay in the filters experi-

enced by the various ID3 components, leading to partial cancellation of the nonlinear terms.
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EVM measurement of DG-BF: The same experimental method was used for characte-
rizing the EVM response of the DG-BF filters to make sure they are well-suited for real
ROF applications. Despite the fact that we repeated the measurements several times, we
could not accomplish this measurement perfectly because of an unexpected problem related
to the interaction between the bias controller module and erbium-doped fiber amplifier
(EDFA). This interaction caused a dramatic fluctuation of EVM level and limited the opti-
cal back-to-back result to -33 dB. We did not see this interaction at the time of the EVM

experiment for GT-BF and we conclude that the bias controller was probably damaged.

Although we could not precisely characterize the EVM response over the entire map due to
this problem, the EVM was measured over the secondary diagonal by manually setting the
bias. The measured EVM was less than -37 dB, which was much better than the threshold

of error-free transmission (-25 dB). It proves that the DG-BF does not distort the signal.

3.5.3. Beam Squint

As we already mentioned this null-steering FBG-based beamformer acts on the signal phase
instead of time delay so this is not a TTD system. The phase shift is constant over the signal
bandwidth and not frequency dependent, as it would be in a TTD beamformer and this
causes the beam squint. A phase shift within (0, 27) is sufficient as this beamformer is de-
signed to work with narrowband signals. When the ideal antenna phase value exceeds this
range, it is folded back in. This is a second source of error on the radiation diagram, be-
cause far-field interference of the antenna patterns does not occur on the same wave-front

for all the antennas.

In the special case of simple beam-steering, we simulated the maximum error on the beam
pointing direction and on the HPBW as a function of the signal frequency and steering-
angle, taking into account both the beam squint effect and the phase wrapping. For that, we
calculated the previously-mentioned errors within a 100 MHz signal bandwidth at 5 GHz
for an array composed of eight antennas with half-wave spacing. The results are shown in
Figure 3.21. The maximum pointing error for the IEEE 802.11a 20 MHz band for 75° steer-
ing angle is 0.43°, that is, only 1.3% of the HPBW in that pointing direction (see Figure
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3.21c). This amount is absolutely acceptable for most communication systems, especially in

indoor environments.

-—-—-150

= 2 j —3pe[|@®
1_5. H -
Z 5 i
o1 -
o8 i
5 0. ;
O .
0 20 40 60 80 100
. a ' ' ' (b)
op 80 1 5} 802.11a i !
s BW_ !
- 1 H]
S o i
) g i
B 0SEH
O . r'l
0 20 40 60 80 100
§
5=2 ©
L 5
A £ 41
5 -£ 2
a2 g 1t
O 0 2 & N
20 20 40 60 80 100
Signal bandwidth [MHz]

Figure 3-21: Errors in definition of the radiation diagram: a) error on the HPBW; b) error on the pointing

direction; c) error percentage on the pointing direction normalized by the beamwidth.

3.6. Conclusion

In this chapter, we introduced some previous TTD optical beamforming techniques and we
discussed their performance and drawbacks. These TTD systems were implemented either
with fiber grating prism, or CFBG and multiwavelength source, or tunable CFBGs. We de-
scribed the operation of our phased-based optical beamformer, the design procedure and its
evolution. We confirmed via simulation and measurement the control of both amplitude
and phase of the modulated RF signal. Finally, the impact on signal quality of optical filters

was verified by transmitting the IEEE 802.11a signal over the beamformer. This experi-
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mental result proved that the beamformer, as a part of ROF link, does not distort the mod-

ulated signals.

In the next chapter, we will exploit the described beamformer module in a complete ROF
link respecting DWDM configuration to demonstrate the beamforming by measuring the

PAA radiation pattern.
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Chapter 4

ROF Link Implementation and Radia-

tion Pattern Measurement

4.1. Introduction

After finalizing the design for DG-BF optical filters and demonstrating an independent con-
trol over the phase and amplitude for a single channel via simulation and measurement, we
are now prepared to perform wireless beamforming. The wireless link consists of a four-
element array antenna as the transmitter, a single-element antenna as the receiver and an
additive white Gaussian channel in between. These antennas have been designed and fabri-

cated using methods described in the second chapter. As discussed in Section 3.4.2, the
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beamformer consists of two chains of independent gratings, one with positive chirp for all
lower sideband filters and the other one with negative chirp for all upper sideband filters. In
order to perform the beamforming via a four-element PAA, each chain is formed by four
cascaded individual FBGs with similar design though operating at different wavelengths.
To achieve the same accumulated delay for all channels, the gratings are placed uniformly
with inverse order in two chains. We measured the delay with an optical network analyzer

as we were splicing the FBGs; uniform spacing with a precision of 1 mm was attained.
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Figure 4-1: Multi-channel WLAN-ROF link including DG-BF.

In this chapter, we briefly describe the different components in the ROF link. We perform
link calibration and obtain the calibration parameters for each channel. The radiation pat-

tern measurement technique is explained, and we demonstrate the beam-steering and null-
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steering capabilities of the DG-BF by comparing simulation and measurement results. We

discuss the source of errors, and the advantages and disadvantages of our beamformer.

4.2. ROF Link Architecture and Hardware

The complete link is depicted in Figure 4.1. As we already mentioned, this link is based on
DWDM configuration with channel spacing of 25 GHz. The wavelengths from a multi-
carrier source are modulated (by the DSB techhique) with a single MZ modulator driven by
a 5 GHz RF carrier. Each wavelength feeds one array element. The modulated wavelengths
are optically amplified by an EDFA and then filtered by the DG-BF. Each channel is fil-
tered twice by separate FBGs, which are part of two chains of concatenated gratings. By
adjusting the temperature of each FBG, the phase and amplitude of the signal on each
wavelength can be controlled independently (see Section 3.4). Afterward, the wavelengths
pass through the distribution link consisting of 10 km of standard single-mode fiber (SMF)
and then demultiplexed by an AWG with channel a spacing of 25 GHz. Each branch goes
through an amplified PD to feed the respective antenna.

Signal Generator
(25GHz Sinusoidal Signal)

RF Amplifier

OOO »| Phase Modulator ===
Polarization controller

Figure 4-2: Schematic diagram for the multi-carrier generator.
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4.2.1. Multi-carrier Laser Source

We exploited a novel multi-carrier generator [42] as the multiwavelength optical source.
This simple method produces a flattened multi-carrier spectrum by combining a phase
modulated laser signal with an apodized CFBG that is carefully tailored to equalize the op-
tical carrier power. The CFBG is a transmission grating with an apodized index profile de-
signed with an iterative algorithm. After the equalizing filter, less than 2.7 dB peak-to-peak

deviation was found amongst seven optical carriers spaced by 25 GHz and the optical sig-
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nal-to-noise ratio (OSNR) was better than 40 dB. The setup for the multi-carrier laser
source is depicted in Figure 4.2 showing the multi-carrier generator composed of a continu-
ous wave (CW) laser, a phase modulator (PM) and a CFBG for flattening all the carriers
and one EDFA to compensate the power loss in PM and CFBG. In the multi-carrier genera-
tor, the polarization states of all carriers are the same. This enables the generated carriers to

be perfectly modulated with a single MZ modulator placed after one polarization controller.
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Figure 4-3: Measurement setup for examining the signal quality after transmission over the ROF link
using a multi-carrier generator. CW laser: Phonetics tunics-BT; Modulator: JDS OC-1; EDFA 1: INO
FAD-180; EDFA 2: JDS OAB1552+1FA0; Phase Modulator: EOspace PM-0k5-20; Signal Generator:
Agilent 83731B; VSG: Agilent E4438C; Bias Controller: YY-Labs Mini-MBC-2; EVM Analyzer: Agilent
E4440A; Amplified Detector: Agilent 11982A LCA; AWG: KyLia Mics-32/025.

We characterized the quality of the multi-carrier generator by modulating all the carriers
with an IEEE 802.11a signal and measuring the EVM level for each carrier, to be sure that
additive noise or distortion introduced by this source does not have a significant effect on

WLAN-ROF transmission quality. To execute the test, we assembled an optical back-to-
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back setup in which the generated wavelengths were modulated by a single MZ modulator
biased at the quadrature point. The RF input to the modulator was provided by the VSG.
All modulated wavelengths were passed through the distribution link consisting of 10 km
of SMF and were demultiplexed by an AWG. Each demultiplexed signal was sent to an
amplified photodetector and the detected RF signal was fed to the VSA for EVM measure-
ment. The setup is illustrated in Figure 4.3. The measured EVM values for each wavelength
are shown in Figure 4.4. Since all measured EVM values are less than -25 dB, the threshold
of error-free transmission, we conclude that the multi-carrier laser can generate and trans-
mit IEEE 802.11 signals with an acceptable quality. Furthermore, the power and wave-
length spacing of this source was completely stable, and for a three-day continuous test it
did not show any fluctuation, change or instability. However, the achieved flattening was
not perfect as one could see in Figure 4.4. Its effect on the whole link can be compensated

by either optical amplification or power regulation as will be explained in Section 4.3.
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Figure 4-4: Measured optical spectrum and corresponding EVM values.
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4.2.2. RF-Gain Improvement and Distortion Compensation by
Employing MZ Modulator Bias Optimization

In many wideband optical links, MZ modulator bias is set at the quadrature point in order to
increase modulation efficiency and reduce second-order distortion [43]. This bias setting
gives maximum spurious-free dynamic-range (SFDR) and RF power gain in wideband
links. In contrast with wideband systems, suboctave ROF links show no superposition be-
tween the bands occupied by the fundamental transmitted frequency and the harmonics
generated by the nonlinearities of the modulator. Thus, suboctave systems are mostly af-
fected by ID3, because second-order harmonfc distortion terms are out of band and can be

filtered in the RF domain.

2Vrr
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%, optimization
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Figure 4-5: Transfer function of the MZ modulator with Vs = 0 at the minimum transmission point.

In [44], a novel method was proposed to optimize the RF gain in narrowband ROF links
employing a MZ modulator followed by an EDFA for amplification. Optimization is
achieved by control of the modulator bias in order to improve the signal optical-modulation
depth (OMD). Thus, for a given modulation amplitude, the optical signal has a reduced
mean optical power and can access the small signal gain of the EDFA. This unsaturated

gain is higher than the saturated one, thereby significantly increasing the RF gain of the
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link. Figure 4.5 illustrates the bias point usually used to optimize the ROF link. In addition,
[44] proves that the same optimized bias point leads to minimum accumulated ID3 in the
signal band. In other words, the signal quality can be improved by changing the bias point

from quadrature to reduce additive distortion to the signal.

Since the ROF link depicted in Figure 4.1 is externally modulated by a MZ modulator and
has been followed by an EDFA, we take advantage of this technique. By optimizing the
MZ modulator bias in the setup of Figure 4.3, a minimum RF gain of 12 dB for each chan-
nel was observed while an EVM level of -36 dB for all wavelengths was achieved. Com-
paring this value with the EVM levels of Figure 4.4, an error reduction of 1 dB to 4 dB for

the received signal is seen because of the ID3 compensation.

4.2.3. FBG Actuators

As discussed in the third chapter, to tune the response of the FBG-based filters we need to
apply the temperature/stress over the gratings, independently. Considering the available
equipment in the laboratory, we chose temperature tuning based on the thermoelectric Pel- -

tier device,

Peltier devices, also known as thermoelectric modules, are small solid-state devices that
function as heat pumps and can be used as both heaters and coolers. A typical unit is a few
millimeters thick by a few millimeters to a few centimeters square. It is a sandwich formed
by two ceramic plates with an array of small Bismuth Telluride cubes in between. The sys-
tem has two sections: a cold side and a hot side. The cold side is commonly used to cool an
object such as a photodetector or a FBG. The hot side consists of a heat sink. When a DC
current is applied, heat is moved from one side of the device to the other, where heat is re-
moved with a heat sink. If the current is reversed the device makes an excellent heater. Pel-
tier devices are not very efficient and can draw amps of current. This disadvantage is more
than offset by the advantages of no moving parts, no Freon refrigerant, no noise, no vibra-

tion, very small size, long life, precise temperature control, etc.

In the DG-BF application, considering the 85 mm long FBGs, a large surface Peltier is re-

quired resulting in high power consumption. For running this system we used an eight-
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channel temperature controller that could provide 1.5 A current for each channel to have a
reasonably fast (a few seconds per each degree) and stable thermal control. It is worth men-
tioning that this configuration was a quick solution based on the available facilities in the

laboratory and commercial solutions can become more efficient.

Holding Plates

Thermoelectric
Peltier Device

a)
Heat sink

Figure 4-6: Schematic diagram (a) and a fabricated version (b) of each FBG actuator.

We were not able to write each FBG in its appropriate channel wavelength because of the
mechanical instabilities in our FBG writing facilities for writing long gratings. To avoid
extreme temperature adjustment, we shifted the filters’ response to the desired channel
wavelength by strain tuning. To do so, we fabricated all FBGs in the shortest possible
wavelength response and then by applying proper amount of stretch on each FBG, we
shifted the spectrum to the longer wavelengths. Figure 4.6 shows the layout of one FBG

actuator with strain and temperature tuning capabilities that we fabricated.

Strain tuning requires the fiber to be fixed and this is usually done by using fiber holders
with mechanical clamps. Since N gratings are cascaded for the N-element PAA beamform-
ing application, we could not use fiber clamps due to their associated loss (around 2 dB for
each clamp). Therefore the fibers were fixed by gluing them (with epoxy glue) on the two

holding plates shown in Figure 4.6. Gluing on the surface of the temperature controller was
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not successful since the amount of stretch will be affected by surface temperature because

of the surface expansion and contraction.

Following the previously-mentioned considerations, we present the schematic diagram of
the actuators for a four-channel beamformer in Figure 4.7. This system controls one chain

of filters and the other chain needs a similar device.

s

Figure 4-7: Schematic diagram (a) and the fabricated version (b) of the actuators for each chain of DG-

BF designed for four-channel application.

4.2.4. Appropriate Optical Detection Stage

Optical-to-wireless transceivers for the base stations in ROF links face major challenges in
improving signal-to-noise ratio (SNR) and increasing transmitted RF power. To achieve the
RF power suitable for wireless transmission, a power amplifier (PA) is usually used in the
base station inline with the PD, which results in additional cost, noise, and distortion. For
example, when transmitting an IEEE 802.11 compliant signal, considering its high PAPR,
the PA stage can clip the signal and dramatically distort it. To avoid clipping, the PA is di-




81

mensioned to have 1 dB compression power several times higher than the mean power of

the transmitted OFDM signal, which is very inefficient.

As we discussed in Section 4.2.2, the ROF link can result in high RF gain and ID3 cancella-
tion by optimizing the bias of an external MZ modulator. However, in [44] the power had
to be attenuated optically at the last stage of the link in order to respect the maximum input
power of the PD. By using a high-power linear PD, we would not need to attenuate the opt-
ical power and via bias optimization technique, the PA stage can be omitted from the ROF
link. Use of high-power linear PDs in typical WLAN-ROF links has been introduced and

their effect on signal quality was characterized in [45].

Unfortunately, these components were not available at the experiment time and so we used
a simple circuit (see Figure 4.8) based on four standard photodiodes (JDS EPM-745) as the
detection part. Since these regular PDs do not support high-power applications, an amplifi-
cation stage consisting of four PAs (Mini-Circuits ZX60-8008E-S+) follows the PDs to

provide enough RF power for wireless radiation.
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Figure 4-8: Electronic circuit for a photodiode working as a single-channel detection stage.

The resistance R; in Figure 4.8 has been chosen by trial-and-error to simultaneously match
the output impedance of the PD to the characteristic impedance of the coaxial cable (50 Q)
and control the PD bias current. We empirically found that 47 Q2 was the optimum value to
maximize RF power delivery. To check the impedance matching, we used a triple-stub mi-
crowave transformer in which three stubs are placed a quarter-wavelength apart on a coaxi-

al line and adjusted in length to compensate for impedance mismatch. We chose the resis-
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tance R; in such a way that the delivered power with and without the triple-stub is the same,

implying that the impedance matching of the PD is optimized.
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Figure 4-9: Schematic diagram of the setup used for multichannel calibration. JDS OC-1; EDFA 1: INO
FAD-180; EDFA 2 & EDFA 3: JDS OAB1552+1FA0; Switch: JDS SB series; Thermal controller: ILX
LDC-3908; Signal Generator 1: Agilent 3731B; Phase Modulator: EOspace 0k5-20; Signal Generator 2:
Agilent E4438C; Fast Oscilloscope: Agilent DSO81004B Infiniium, real time, 10 GHz bandwidth; Bias
Controller: YY-Labs Mini-MBC-2; Amplified Detector: Agilent Lightwave Converter; AWG: KyLia
Mics-32/025.

4.3. Link Calibration

To operate this beamformer, we need to know the phase and amplitude response of the cas-
caded filters as a function of the temperature setting in order to be able to set the complex
excitation for each channel. In other words, a processor in the CO would determine the de-
sired phase and amplitude for each channel and generate the appropriate Peltier control sig-
nals. To obtain the calibration maps of these control signals, a setup similar to that in Figure
3.12 is developed for multichannel operation. We do not use an optical network analyzer,
as the filters can be directly calibrated versus the actuating adjustment values instead of

frequency shift. The multichannel calibration setup is shown in Figure 4.9.




83

Normalized amplitude response [-] Whrapped phase response [rad]
1
E]
e e
12 5 =
gl s ” s
s1 2 s| &
< | E,s E
Ol e ‘12
.| N
:%n = 2 g
18
Zvén 0
x5 3 2 i 21 25 2 5 pcl
Gratmg Utemperature ["C] Grating U temperature [°C]
a 8
g 245 8 E 2 ]
g A2 s
o E u 5 3@ 2
£l & |
£ o=s . 5 2
o3 hr ‘
£, 12
I ‘s ’
(.') 1] O | 8
2 22§|5 F ns P ns 24
Gmtmg Utemperature [°C] Grating U temperature [°C]
i 246
9 8
(] e 7] @ 2 .4
E fg I3 g 2
H B | &
o E E 2
2, o B 235
- 3 ; 4
2 | £ =
2305 2 25 ) prs ns5 <] Bs 24 2%]5 2; ) 25 n 25 : A 35 24
GratinlU temperature [°C] Grating Utememtum |2|
il 45
— J ko) 0
£ e 5
g 7 g 4
2 ® R
v E 6 3
§ D5 s é- 7
cl E ] 2
s|le 43
of < Jd o 4
2 £ )
= )| &
S |© :
P 2§| ] z n 35 2] 245
Gmting U temperature [°C] Grating U temperature [°C]

Figure 4-10: Calibration amplitude and phase information versus temperature adjustment for all channels:
channel 1: 1555.14nm, channel 2: 1555.34nm, channel 3: 1555.54 and channel 4: 1555.74nm.

The measured maps for all four channels are reported in Figure 4.10 and the rectangles il-

lustrate the zones of interest. Phase maps confirm that 27 phase tunability is achieved for all

channels, as we expected based on arguments in Section 3.3.3.
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The measured maps for all four channels are reported in Figure 4.10 and the rectangles illu-
~ strate the zones of interest. Phase maps confirm that 2z phase tunability is achieved for all

channels, as we expected based on arguments in Section 3.3.3.

When comparing the amplitude responses with Figure 3.17a, we see that the shapes for the
third and fourth channels are distorted. The differences between the new measurement se-
tup and the previous one are the addition of a ROF distribution link, the insertion loss of
several gratings in a cascade and the application of strain on the FBG-based filters. We re-
calibrated the system without the distribution link and the same phenomenon was still ob-
served. Furthermore, considering that the filters operate at different wavelengths, the fact
that gratings are cascaded along adjacent gratings should not have any impact except for a
negligible loss. The only remaining possible source of discrepancy is that the filters are
stretched. As was already mentioned, we apply a strain to shift the filter response to the
channel center wavelength since all the filters have been fabricated for the shortest possible
wavelength. Theoretically, if the stretch is applied uniformly over the grating length, a li-
near spectrum shift to higher wavelength is expected. To verify this, we performed a simple
test by choosing one of the gratings and measuring its group delay response under different
applied strains. Then, we calculated the cumulative phase of these measured group delay
responses using (3.8). In this way, we could see the impact of strain on the filter phase tu-
nability. Figure 4.11 depicts the cumulative phase response versus frequency displacement
for one of the FBGy;s. As one can see, the curves are very similar which indicate that the

strain does not have any side effect on the filter response.

Other effects such as slipping of the fiber in its jacket over time and interaction between
thermal actuating and stretching may be the cause of this phenomenon. This explanation
seems cogent once we consider the increase in quality degradation of amplitude maps for
higher wavelengths. For commercial applications, one possible solution would be the direct
fabrication of each grating for its respective channel wavelength. In this way, there is no
need to apply stretch on the filters and the same non-distorted amplitude response as Figure

3.17a is expected.

To validate steering capability, we performed a fast calibration by applying a symmetric

shift of the group delay responses versus modulation sidebands. From Section 3.4, we ex-
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points are measured in comparison with a complete map measurement; the partial calibra-
tion will suffer less from measurement glitches and unstable stretch effect. The results are
shown in Figure 4.12 illustrating the unwrapped phase retardation and amplitude variations
versus temperature of the two corresponding gratings for each channel. As one can see, a
phase tunability of more than 27 is easily achievable within 1.6° of Celsius temperature de-
viation for all channels. The flatness of the amplitude responses degrades as the strain in-
creases (higher channel number) with maximum amplitude variation of 0.5 dB, 0.7 dB, 0.9

dB and 1.6 dB respectively. |
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Figure 4-11: Cumulative phase versus grating displacement of the FBGys under different strains.

Besides optical calibration, the system must also be calibrated in the RF domain. Since we
designed and assembled all PDs, PAs and antennas similarly for the four channels, we do
not expect to see any difference of power loss (power gain) amongst them in the RF do-
main. Some disparities may originate from slight differences in the responsivity of PDs,
resistance of PDs (R, in Figure 4.8) and RF amplifier performance. In addition, different
RF connections and coaxial cables can be another source of irregularity. A maximum RF
asymmetry of 4 dB was recorded. In addition, a 2.7 dB power difference existed between
the carriers in the multi-carrier generator (see Section 4.2.1). To overcome these problems,

power regulation was realized by a set of proper attenuations before PDs.
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Figure 4-12: Measured unwrapped phase retardation and amplitude variation versus symmetric tempera-

ture deviation of the two corresponding gratings for each channel.

4.4. Radiation Pattern Simulation and Measurement

The radiation pattern of the array antenna is determined by the radiation patterns of the in-
dividual elements, their orientation in space and the amplitude and phase of the feeding cur-
rents. If each array element is an omnidirectional source, the radiation pattern obtained will
be solely dependent on the array geometry and the feeding currents and will be exactly the
array factor. If the elements of the array are similar and if they are directional, the radiation
pattern is computed from the principle of pattern multiplication as the product of the array
factor and the individual element pattern. Hence, the array factor can be easily computed

from the array pattern and the single-element pattern.
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¢) 0=30° o d) 6 = -60°

Figure 4-13: Measured (blue curves) and simulated (red curves) radiation pattern diagrams of a four-

element array with half-wave spacing for pointing angles of: a) -14°, b) -45°, ¢) 30° and d) -60°.

Considering the complicated optical setup, we were forced to perform pattern measurement
in the ROF laboratory without moving the setup to an anechoic chamber. We arranged
pieces of RF absorbers on the floor and around the wireless setup to minifnize reflections.
To prorve the concept of beam-steering with this novel optical beamformer, some examples
are simulated and measured. The pattern measurement setup is based on a rotating transmit-
ter and a fixed receiver. Since the beamformer is tested in transmit mode, we placed and
fixed the detection part, RF amplification stage and PAA on a plate fixed on the shaft of a
stepper motor (Applied-Motion HT23-393). A single antenna (similar to each element in
the array) was used as the fixed receiver. We chose a 1 m distance between transmitter and
receiver antennas to both meet the far-field range condition and reduce the impact of reflec-
tions. For each set of element excitations, we rotated the transmitter side for 180 steps cov-
ering 180° of the front side of the array; for each step the received RF power in the receiver
was measured by a VSA and saved. The speed and delay time for each rotation step was
chosen empirically in support of stable power acquisitions. The measurement and simula-

tion results are shown in Figure 4.13 for different pointing angles.
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Figure 4-14: Simulation (red curves) and measurement (blue curves) of the radiation pattern diagram for a
four-element array with half-wave spacing while pointing at 0° using the uniform (a) and 3 dB tapered (b)

amplitude distribution.
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Figure 4-15: Simulation (red curves) and measurement (blue curves) of the radiation pattern diagram for a
four-element array with half-wave spacing while pointing at 30° using the uniform (a) and 3 dB tapered (b)

amplitude distribution.

The measurement results are in general agreement with simulations and confirm the beam-
steering capability even for the extreme beam direction of -60°. For all examples, a slight
difference of between 4° and 8° in pointing angle can be found. This amount may be related
to imperfections in adjusting the absolute phase value for each element. Lower gain in all

measured traces is probably due to the errors in amplitude and phase adjustment or unex-



89

The measurement results are in general agreement with simulations and confirm the beam-
steering capability even for the extreme beam direction of -60°. For all examples, a slight
difference of between 4° and 8° in pointing angle can be found. This amount may be related
to imperfections in adjusting the absolute phase value for each element. Lower gain in all
measured traces is probably due to the errors in amplitude and phase adjustment or unex-
pected loss in some radiators. Due to the inaccurate absorber positioning and performance,
reflection may still influence the patterns. Another important reason for the observed dif-
ferences is mutual coupling between array elements. Each array element while radiating
acts as a receiver for adjacent array elements. Effects from this coupling behavior have
been seen in the input impedance of the antennas [7]. The coupling also affects the radia-
tion pattern of an array by disturbing the current distribution of the adjacent elements [7],
thereby perturbing the radiation pattern. The impact of mutual coupling depends on the rad-
lation pattern of the other elements, their excitation and the radiated power level. Further-
more, the mutual coupling effect was shown to degrade the impedance matching quality
and signal to interference-plus-noise ratio (SINR) significantly, especially when the inte-
relement spacing is decreased [46]. Some methods to improve the antenna design and to
eliminate the effect of mutual coupling on SINR were proposed in [17] and [47]. As this
~ was not the main target of this research, we did not consider these solutions in the design

process.

To demonstrate the suitability of the system for null-steering applications, two different
amplitude distributions have been simulated and measured. The beam directions of 0° and
30° were chosen. The pattern depicted in Figure 4.14a and 4.14b correspond to simulation
and measurement performed using the uniform (0, 0, 0, 0) and 3 dB tapered (-3, 0, 0, -3)
amplitude distribution, respectively, for the beam direction of 0°. As it is marked in the fig-
ures, the null positions are moved and the measured SLL ratio is increased from 8 dB to 23
dB by changing the amplitude distribution with an identical trend in both simulation and
measurement. The same distributions were examined for the beam direction of 30° and the
results are shown in Figure 4.15. We can see the change of null positions and occurrence of
a new null in the direction of the 60°. These measurements confirm null-steering and beam-

shaping by independent control over the phase and amplitude. The reduction of the gain for
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the tapered excitation (in both simulation and measurement) is due to the lower injected

power to the antenna.

Advanced pattern design techniques considering the SLL ratio, null managements and
beam pointing can be found in [7] and [17]. However, the instability in the system limited
the amplitude tuning resolution and made the process of calibration and measurement diffi-
cult, so we were not able to take advantage of those techniques for more complex pattern

shaping examples.

4.5. Source of Errors in the Optical Domain

In the proposed optical beamforming scheme, several phenomena can cause errors and de-

grade the performance:

CW laser source: The optical source must be stable from the point of view of power
level, polarization and operating wavelength to respect calibration information. The stabili-
ty of the multi-carrier generator is directly proportional to the stability of the CW laser ex-
ploited to generate the carriers. However, small fluctuations of polarization and power level
can be compensated by bias control and optical amplification stages. The requirements can

be met by telecom, temperature stabilized distributed feedback (DFB) lasers.

FBG positioning: 1f the gratings are uniformly spaced, all the channels will experience
the same propagation delay while traversing the DG-BF. If the spacing is non-uniform,
some channels will have a higher propagation delay, which corresponds to excess phase
retardation. It is relatively easy to control the positions of the gratings in the chain with a
precision of 1 mm. This tolerance corresponds to an excess phase retardation of 2.8° at a
modulation frequency of 5 GHz. This error can easily be compensated by proper offsetting

of the calibration maps.

Sensitivity of FBGs to environmental parameters: The response of the FBG-based fil-
ters is sensitive to the temperature or stretch volatilities. Theoretically, when both these pa-
rameters are stabilized, there is no impact on the system performance. In this beamforming

architecture, the fiber gratings are integrated and placed in the CO that usually has both vi-
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bration proof facilities and automatic ventilation system. Nonetheless, the beamformer will

require a temperature controlled package.

Asymmetry of power loss/gain between different channels: As described in Section
4.3, asymmetry in power delivery can originate from differences in non-flattened channel
power, dissimilar RF connections, different responsivity of PDs, etc. A proper power regu-

lation stage easily copes with this difficulty.

4.6. DG-BF Advantages and Disadvantages

The proposed beamforming system offers several advantages.

Simultaneous and indépendent control over amplitude and phase for each antenna in
the array: Simultaneous control of amplitude and phase of the signal of each antenna in the
array offers maximum flexibility in designing the radiation pattern. This allows for better
interferer nulling and reduction of SLL. Previous published works based on FBG allow on-
ly for beam-steering by controlling the phase/delay of signals and to our knowledge, DG-
BF is the first all-optical beamformer that supports this feature.

High speed adjustment of the radiation diagram: The DG-BF can be controlled by
stretching or by adjusting the temperature of the gratings. Hence the speed of reaction of
the beamformer is limited only by the speed of the stretcher. Piezoelectric stretchers can

adjust the radiation diagram in a few milliseconds.

Easy integration with antenna remoting links: Antenna remoting through ROF links
offers low transmission losses and immunity frdm electromagnetic interference and cross-
talk compared to conventional coaxial antenna feeders. Also, optical WDM allows for ad-
dressing of several antennas over one single fiber. Optical signal processing can be imple-
mented in ROF links in order to add beamforming functionalities. This is especially advan-
tageous if the beamformer is designed to be localized and controlled at the CO, in order to
simplify the base stations transceiver. However, if the ROF link antenna addressing is
based on WDM, the beamformer must operate with constant optical wavelengths and can
not rely on tunable sources because the wavelength positions are fixed by the WDM filters

which route the optical signals form the CO to the base stations. DG-BF complies with
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DWDM systems and allows for integration of multi-carrier laser source, optical modulator,
beamformer, optical amplification stage and the processing center, all in the CO. This helps

to share the cost of the equipment between several access points.

Reduced number of elements: The DG-BF employs few optical components: two
chains of FBGs and a four-port circulator (or two three-port circulators) for independent
complex control of four antennas. Furthermore, there is no need for employing TLS or tun-

able optical filters which reduces the complexity and the cost of the whole system.

Operation with DSB modulation systems: As we have discussed in Section 3.3.2, fiber
dispersion has a detrimental effect on the propagation of DSB modulated signals: it causes
each sideband of the optical modulated signal to have a different phase shift depending on
the length of the fiber, dispersion and modulation frequency. At the optical receiver, each
sideband beats with the optical carrier, and the two beat signals ideally interfere construc-
tively. When the phase shift reaches z because of group delay dispersion, the intensity
modulation is transformed into avpure phase modulation and no RF signal is detected. RF
signal suppression has been observed also in beamformers based on chirped FBG, due to
the chirp-induced dispersion within the modulation sidebands. Several authors have pro-
posed to solve this issue by using single sideband (SSB) modulation instead of DSB [26],
[28], but SSB requires a more complex and expensive modulation stage and does not allow
for the use of low-cost modulators as those based on the electro absorption effect. The pro-
posed beamformer is designed to be used with DSB signals and can be adjusted to compen-

sate for RF signal suppression induced by fiber dispersion as shown in Section 3.4.

The main disadvantage of the proposed beamformer is the long length of each filter. Each
filter has a length of 85 mm, therefore for beamforming of a four-element PAA two chains,
each with a length of 36 cm, are required. Such long chains of gratings, along with the ac-
tuators needed for controlling the DG-BF, are not easy to package. Furthermore, such long
gratings need large actuators and this increases power consumption of the system and

makes it more susceptible to temperature fluctuation or vibration.
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4.7. Conclusion

In this chapter, we described different components in the ROF link, the technique for in-
creasing the RF gain and reducing the distortion. The calibration process for this beamfor-
mer was introduced and the measured amplitude and phase maps were presented. The rad-
iation pattern measurement technique was explained and we demonstrated the beam-
steering and null-steering capabilities of the DG-BF via comparing simulation and mea-
surement results. A discussion of possible sources of error in the optical domain and their
solutions were presented. Finally, we explained the advantages the disadvantages of this

beamformer versus previous techniques.
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Chapter 5

Conclusion

In this research, we investigated the feasibility of a novel phase-based optical beamformer
with null-steering capacity and we demonstrated its performance via radiation pattern mea-
surements. We reviewed recent developments in enabling beam-steering based on optical
TTD method and our survey showed that many of the existing methods suffer from discrete
beam-pointing or a need for complex devices such as TLS and tunable optical filters. Com-
pared to other TTD solutions, the proposed null-steering optical beamformer is a reliable
module for narrowband WLAN applications offering several advantages such as null-

interfering and SLL reduction.
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Beside the main target of this research, several parallel efforts were made to provide low-
cost solutions for other components in the ROF link. We designed and fabricated the ap-
propriate PAA, we set up the proper amplified detectors and we developed grating actua-
tors. We made all these components compatible with our general link architecture and final-
ly, we used them for radiation pattern measurements. In addition, since we were using an
external modulator for narrowband applications, we took advantage of the modulator bias

optimization technique to achieve RF gain improvement and distortion compensation.

For the first time to our knowledge, we examined the impact of the beamformer on the
transmitted signal quality by measuring the EVM for IEEE 802.11a as one of the most
common modulation formats used for WLAN applications. This test was indispensable
since the beamformer module was based on FBG technology and the distortion of the signal
phase could affect the [EEE 802.11 signal quality. The experimental results proved the abil-

ity of the null-steering beamformer to transmit the signal without distorting or adding noise.

The simulation and measurement results of the beamformer response for single-channel
operation confirmed that the FBG-based filters provided enough dynamic range in setting
the phase and amplitude of each element in the PAA. We then assembled the whole ROF
link that relied on wavelength multiplexing to address each element. The multiwavelength
light was generated by a multi-carrier laser source, externally modulated by an optimized-
bias MZ modulator, optically amplified, processed by an optical null-steering beamformer,
distributed over a 10 km fiber link, demultiplexed by an AWG, detected by the amplified
PDs and finally fed to the PAA. The radiation pattern of the PAA was measured for several
settings and the results demonstrated beam-steering, SLL reduction and null-steering capa-

bility.

From the system level point of view, this beamformer is compatible with DWDM architec-
tures and can be integrated in the CO, resulting in shared equipment for sevéral PAAs and
consequently reducing the installation and maintenance costs. The flexibility in continuous
selection of the phase excitation results in continuous beam-pointing. That means the beam-

pointing resolution only depends on the accuracy of the FBG tuning.



96

From the point of view of implementation, the difficulties in the experimental work mostly
came from fixing the fibers on the thermal actuators, stretching and stabilizing the filter

responses. There are well-known commercial solutions that address theses issues. .

Future work

Regarding the successful measurement results for this type of beamformer, some efforts
can be made to improve the functionality and performance of the system. As we already
discussed, the main disadvantage of this system is the length of the gratings and non-
compact multichannel solution. Without a new filter design, one can reduce the length of
the gratings by increasing the chirp factor of the gratings. Shorter grating lengths will allow
more stable and uniform temperature profile along the grating, lower power consumption
and smaller packaging. In order to simplify the grating design, the solution based on GT-BF
should be investigated further by relaxing some specifications. For instance, as we dis-
cussed in chapter one, a 2z controllability over the phase excitations enables the beamfor-
mer to cover a steering range of 180°. However, the extreme pointing angles are not of in-
terest due to the antenna positioning limitation. Therefore, by reducing the phase tunability
in the gratings response, we may be able to obtain a feasible multichannel solution of GT-
BF for which the signal from a multiwavelength source could be processed by just a single
pair of gratings and then demultiplexed to feed an antenna array. This would help in reduc-

ing the size and power consumption of this solution.
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