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Résumé

Dans cette thèse, nous sommes intéressés par des problèmes de préservation des applications

non-linéaires entre deux algèbres de Banach complexes unitaires A et B. En général, ces pro-

blèmes demandent la caractérisation des applications ϕ : A → B non nécessairement linéaires,

qui laissent invariant une propriété, une relation ou un sous-ensemble.

Dans le Chapitre 3, la description des applications surjectives ϕ de B(X ) sur B(Y ), qui satisfont

c(ϕ(S)±ϕ(T )) = c(S ±T ), (S,T ∈B(X )),

est donnée, où c(·) représente soit le module minimal, ou le module de surjectivité ou le module

maximal et B(X ) (resp. B(Y )) dénote l’algèbre de tous les opérateurs linéaires et bornés sur X

(resp. sur Y ).

Dans le Chapitre 4, une question similaire pour la conorme des opérateurs, est considérée. La ca-

ractérisation des applications bicontinues et bijectives ϕ de B(X ) sur B(Y ), qui satisfont

γ(ϕ(S ±ϕ(T )) = γ(S ±T ), (S,T ∈B(X )),

est obtenue.

Le Chapitre 5 est consacré à la description des applications surjectives ϕ1,ϕ2 d’une algèbre de

Banach semisimple A sur une algèbre de Banach B avec un socle essentiel, qui satisfont

σ
(
ϕ1(a)ϕ2(b)

)=σ(ab), (a,b ∈A ).

Aussi, la caractérisation des applications ϕ de A sur B, sous les mêmes hypothèses sur A et B,

qui satisfont

σ
(
ϕ(a)ϕ(b)ϕ(a)

)=σ(aba), (a,b ∈A ),

est donnée. Comme conséquences, nous incluons les résultats obtenus au cas des algèbres B(X )

et B(Y ).
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Abstract

In this thesis, we are interested in nonlinear preserver problems. In a general formulation, these

demand the characterization of a map ϕ : A → B, which is not supposed to be linear and leaves

a certain property, particular relation, or even a subset invariant, where A and B are complex

Banach algebras with unit.

In Chapter 3, the description of maps ϕ from B(X ) onto B(Y ) satisfying

c(ϕ(S)±ϕ(T )) = c(S ±T ), (S,T ∈B(X )),

is given, where c(·) stands either for the minimum modulus, or the surjectivity modulus, or the

maximum modulus and B(X ) (resp. B(Y )) denotes the algebra of all bounded linear operators on

a Banach space X (resp. on Y ).

In Chapter 4, a similar question for the reduced minimum modulus of operators, is considered.

The characterization of bijective bicontinuous maps ϕ from B(X ) to B(Y ) satisfying

γ(ϕ(S ±ϕ(T )) = γ(S ±T ), (S,T ∈B(X )),

is obtained.

Chapter 5 is devoted to description of maps ϕ1,ϕ2 from a semisimple Banach algebra A onto a

Banach algebra B with an essential socle, that satisfy

σ
(
ϕ1(a)ϕ2(b)

)=σ(ab), (a,b ∈A ).

Also, the characterization of maps ϕ from A onto B, under the same assumptions on A and B,

satisfying

σ
(
ϕ(a)ϕ(b)ϕ(a)

)=σ(aba), (a,b ∈A ),

is given. The corollaries for algebras B(X ) and B(Y ), that follow immediately from the results, are

included.
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intitulé Nonlinear maps preserving the minimum and surjectivity moduli et publié dans Linear
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vad Mashreghi, intitulé Nonlinear maps preserving the reduced minimum modulus of operators

et publié dans Linear Algebra and its Applications en mars 2016. Le Chapitre 5 repose sur un ar-

ticle s’intitulant Maps between Banach algebras preserving the spectrum, coécrit avec Abdellatif

Bourhim et Javad Mashreghi et resoumis pour publication, après la réalisation des modifications

suggérées par deux arbitres, dans Archiv der Mathematik en juin 2016.
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Chapter 1

Introduction

1.1 Basic definitions and properties

In this section we introduce definitions and properties of concepts that are used in the thesis.

We denote complex Banach algebras with unit by A and B, Inv(A ) is the set of all invertible ele-

ments of A and

σ(a) := {λ ∈C : a −λ1 ∉ Inv(A )}

is the spectrum of a ∈A , which is a nonempty compact set and

r(a) = lim
n→∞‖an‖ 1

n

is the spectral radius of a ∈ A . An element a ∈ A is called idempotent if a2 = a. Also, an element

a ∈ A is said to be nilpotent if there is n ∈ N such that an = 0, and it is called quasi-nilpotent if

r(a) = 0.

We denote by radA the Jacobson radical of A , which is the intersection of all maximal left (or

right) ideals of A . The Banach algebra A is called semisimple if its Jacobson radical is zero, which

is equivalent to the fact that a = 0 is the only element in A , for which r(xa) = 0 for all x ∈ A . We

need the spectral characterization of the radical, which was given by Zemánek [6, Theorem 5.3.1].

Theorem 1.1.1. Let A and B be Banach algebras. Then the following properties are equivalent.

(i) a is in the Jacobson radical of A .

(ii) σ(a +x) =σ(x), for all x ∈A .

(iii) r(a +x) = 0, for all quasi-nilpotent elements x ∈A .

We say that A is a prime if for any two elements x, y ∈ A , the identity xA y = {0} holds true when

either x = 0 or y = 0.

A Jordan algebra is an algebra with a bilinear multiplication that satisfies the two conditions x y =
y x and (x y)x2 = x(y x2), for all x, y in the algebra. Given an associative algebra we can build a
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Jordan algebra, defining the Jordan product x ◦ y = 1
2 (x y + y x). A Jordan-Banach algebra is a Jordan

algebra with a complete norm satisfying ‖x ◦ y‖ ≤ ‖x‖‖y‖. Jordan-Banach algebras are considered

over the complex field and have a unit.

The socle of A , which is denoted by Soc(A ), is defined as the sum of all minimal left (or right)

ideals of A , if A has a minimal left (or right) ideal, and as Soc(A ) = {0} otherwise. We say that

a nonzero element u ∈ A has rank one if u belongs to some minimal left (or right) ideal of A .

This is equivalent to the fact that for all x ∈ A , the spectrum σ(ux) contains at most one nonzero

scalar. Note that an element of the socle can be written as a sum of elements of rank one and for

a ∈ Soc(A ) the spectrum σ(ax) is finite for all x ∈A . We refer the reader to [6, 9, 26] for proofs and

more details.

An ideal I of A is said to be essential if it has a nonzero intersection with every nonzero ideal of A .

If A is semisimple, then I is essential if and only if 0 is the only element a of A for which aI = 0.

Let A be a unital complex Banach algebra. A map ∗ : A →A is called an involution if it satisfies

(i) (x∗)∗ = x, for every x ∈A ,

(ii) (x y)∗ = y∗x∗ and (x + y)∗ = x∗+ y∗ for every x, y ∈A ,

(iii) (λx)∗ =λx∗, for every λ ∈C and x ∈A ,

(iv) 1∗ = 1

If also ‖xx∗‖ = ‖x‖2, for every x ∈A , then we say that A is a C∗-algebra.

Let H be an infinite-dimensional complex Hilbert space and B(H ) be the algebra of all bounded

linear operators on H . B(H ) is the prototypical example of a C∗-algebra, where as an involution

of an operator of B(H ) is taken its adjoint operator. By Gelfand–Neumark theorem [36] we know

that, conversely, every C∗-algebra is isomorphic to a norm-closed adjoint-closed subalgebra of

B(H ) for a suitable Hilbert space H . We remark also that a C∗-algebra is semisimple, as 0 =
r(xx∗) = ‖x‖2 and x = 0.

An element h of a Banach algebra A is called hermitian if it has real numerical range, that is, if

f (h) ∈ R, for all f in the Banach dual space of A with f (1) = 1 = ‖ f ‖. We denote by H(A ) the

closed real subspace of A of all hermitian elements of A . It is well known that an element in

a C∗-algebra is hermitian if and only if it is self-adjoint. By the Vidav-Palmer theorem, a unital

Banach algebra A is a C∗-algebra if and only if it is generated by its hermitian elements, that is if

A = H(A )+ i H(A ) and the involution is given by (h + i k)∗ := h − i k, where h,k ∈ H(A ); see [12].

A weakly closed, unital ∗-subalgebra of B(H ) is called a von Neumann algebra. Clearly B(H )

itself is a von Neumann algebra and every von Neumann algebra is a C∗ algebra. There is also an

equivalent abstract definition of a von Neumann algebra, given by Sakai [73]. It can be defined as

a C∗-algebra, which as a Banach space is the dual of some other Banach space called the predual.

Therefore, a Jordan-von Neumann algebra is a Jordan algebra, which has a predual.
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Let X and Y be infinite-dimensional complex Banach spaces and B(X ,Y ) be the space of all

bounded linear maps from X to Y . As usual, we write B(X ) instead of B(X , X ). We remark that

B(X ) is a semisimple prime algebra and Soc(B(X )) is equal to the ideal of all finite rank operators

in B(X ), which we denote by F (X ). The dual space of X is denoted by X ∗ and the Banach space

adjoint of an operator T ∈B(X ) is denoted by T ∗.

Now, we give the definitions of different types of moduli of an operator T ∈ B(X ). The minimum

modulus T is

m(T ) := inf{‖T x‖ : x ∈ X , ‖x‖ = 1},

and is positive if and only if T is bounded below, which means T is injective and has a closed range.

The surjectivity modulus of T is

q(T ) := sup{ε≥ 0: εBX ⊆ T (BX ) },

where BX is the closed unit ball of X . It is positive precisely when T is surjective. And the maximum

modulus of T is

M(T ) := max{m(T ),q(T )}

and obviously, is positive whether T is bounded below or T is surjective. And also, we define the

reduced minimum modulus of T by the following

γ(T ) :=
inf{‖T x‖ : dist(x,K er T ) ≥ 1} if T 6= 0,

∞ if T = 0,

which is positive precisely when T has closed range. We have the following equalities for minimum

and surjectivity moduli

m(T ) = inf{‖T S‖ : S ∈B(X ), ‖S‖ = 1} and q(T ) = inf{‖ST ‖ : S ∈B(X ), ‖S‖ = 1}. (1.1.1)

It is easy to see that

m(T ∗) = q(T ) and q(T ∗) = m(T ).

Another important property is that for every invertible operator T ∈B(X ) we have

m(T ) = q(T ) = M(T ) = γ(T ) = ‖T −1‖−1
. (1.1.2)

We remark that M(T ) ≤ γ(T ) and M(T ) = γ(T ), if M(T ) > 0.

The equalities (1.1.1) opened the way to generalize the definitions of moduli to the general Banach

algebra case. Let a be an element in a Banach algebra A . Then

m(a) := m(La) = inf{‖ax‖ : x ∈A , ‖x‖ = 1}, q(a) := m(Ra) = inf{‖xa‖ : x ∈A , ‖x‖ = 1},

M(a) := max{m(a),q(a)} and γ(a) :=
inf{‖ax‖ : dist(x,K er La) ≥ 1} if a 6= 0,

∞ if a = 0,
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where La and Ra are the left and right multiplication operators by a. We have the same property as

(1.1.2) for an invertible element a ∈ InvA in a general case too.

m(a) = q(a) = M(a) = γ(a) = ‖a−1‖−1
.

And it is easy to prove that for every a,b ∈A

m(a)m(b) ≤ m(ab) ≤ ‖a‖m(b) and q(a)q(b) ≤ q(ab) ≤ q(a)‖b‖.

Also we have for every a,b ∈A

|c(a)−c(b)| ≤ ‖a −b‖,

where c(·) stands either for the minimum modulus, or the surjectivity modulus, or the maximum

modulus. And so, we conclude that the spectral functions m(·), q(·) and M(·) are contractive, hence

continuous. However, we must note that γ(·) is not continuous as the following example shows:

γ

([
1 0

0 1/n

])
= 1/n → 0 6= 1 = γ

([
1 0

0 0

])
as n →∞.

Particularly, for the case of the Banach algebra B(X ) we obtain that the set {T ∈B(X ) : c(T ) > 0} is

open, so the subset of all lower bounded, surjective and lower bounded or surjective operators in

B(X ) is open, which are denoted respectfully byΩLB(X ),ΩSurj(X ) andΩLB-or-Surj(X ).

If particularly A is a C∗-algebra and a ∈A , then by [15, Lemma 2.2]

m(a) = inf{λ : λ ∈σ(|a|)} and q(a) = inf{λ : λ ∈σ(|a∗|)}, (1.1.3)

where |a| := (a∗a)1/2 is the absolute value of a. It follows that

m(a) = q(a∗)

and consequently M(a) = M(a∗). If the algebra A has a property that every left (right) invertible el-

ement is invertible, then in fact we have the equality of the minimum modulus and the surjectivity

modulus of an element. This is the case for the algebra Mn(C) of all n ×n complex matrices.

The formula for the reduced minimum modulus is obtained by Harte and Mbekhta in [39], which

is

γ(a)2 = γ(a∗a) = inf
{
λ : λ ∈σ(a∗a)\{0}

}= γ(a∗)2. (1.1.4)

Now, let us give some definitions about a mapping ϕ : A →B. We say that

• ϕ is unital if

ϕ(1A ) = 1B ,

• ϕ preserves the spectrum if for every x ∈A

σ(ϕ(x)) =σ(x),
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• ϕ compresses the spectrum if for every x ∈A

σ(ϕ(x)) ⊂σ(x),

• ϕ expands the spectrum if for every x ∈A

σ(ϕ(x)) ⊃σ(x),

• ϕ preserves invertibility if for every x ∈A

x is invertible =⇒ ϕ(x) is invertible,

• ϕ preserves invertibility in both directions if for every x ∈A

x is invertible ⇐⇒ ϕ(x) is invertible,

• ϕ is a spectral isometry if for every x ∈A

r(ϕ(x)) = r(x),

• ϕ is spectrally bounded if there is a constant M such that for every x ∈A

r(ϕ(x)) ≤ Mr(x),

• ϕ is spectrally bounded from below if there is a constant m such that for every x ∈A

r(ϕ(x)) ≥ mr(x).

We mention here an interesting fact, which is cited from [6, Theorem 5.5.2].

Theorem 1.1.2. Let A be a Banach algebra and let B be a semisimple Banach algebra. Suppose that

ϕ : A →B is a surjective linear map such that r(ϕ(x)) ≤ r(x) for all x ∈A . Then ϕ is continuous.

Clearly, if ϕ preserves (resp. compresses, expands) the spectrum, then ϕ is a spectral isometry

(resp. spectrally bounded, spectrally bounded from below).

Also, it is easy to see that if ϕ is a unital linear map that preserves the invertibility (in both di-

rections) then ϕ compresses (preserves) the spectrum. Conversely, a linear map that compresses

(preserves) the spectrum, obviously preserves the invertibility (in both directions) and by the fol-

lowing lemma, cited from [5, Lemme 4, p.30], we can assume that it is unital.

Lemma 1.1.3. Let A and B be two Banach algebras with unit. If ϕ : A → B is a linear map that

compresses (preserves) the spectrum, then φ(x) := (ϕ(1))−1ϕ(x) is a linear map that also compresses

(preserves) the spectrum and is unital.

But we can claim more when A is semisimple andϕ : A →B is a linear spectrum-preserving map.

We also write down the proof, cited from [6, 52], as it is interesting and short.
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Lemma 1.1.4. Let A be a semisimple Banach algebra. Suppose thatϕ : A →B is a linear spectrum-

preserving map. Then we have that

(i) ϕ is injective;

(ii) if ϕ is surjective then ϕ is unital;

(iii) if ϕ is surjective then ϕ is continuous, consequently there exist two positive constants α,β such

that α‖x‖ ≤ ‖ϕ(x)‖ ≤β‖x‖, for all x ∈A .

Proof. (i) Suppose that ϕ(a) = 0. Then σ(a + x) = σ(ϕ(a + x)) = σ(ϕ(x)) = σ(x) for every x ∈ A .

By Zemánek’s characterization of the radical, we have a ∈ radA = {0}.

(ii) Since ϕ is surjective, there exists an a ∈ A such that ϕ(a) = 1. We have that σ(x −1+ a) =
σ(ϕ(x −1)+1) =σ(x −1)+1 =σ(x) for every x ∈A . Again, by Zemánek’s characterization of

the radical a −1 ∈ radA = {0}, so a = 1.

(iii) In particular we have r(ϕ(x)) = r(x), for all x ∈A and moreover ϕ is surjective, so, we can use

the Theorem 1.1.2 and conclude thatϕ is continuous. By (i),ϕ is also injective, so by the open

mapping theorem, ϕ−1 is continuous.

We say that a linear map ϕ : A →B is a homomorphism if

ϕ(ab) =ϕ(a)ϕ(b), (a,b ∈A ).

It is called an anti-homomorphism if

ϕ(ab) =ϕ(b)ϕ(a), (a,b ∈A ).

And it is said to be a Jordan homomorphism if

ϕ(ab +ba) =ϕ(a)ϕ(b)+ϕ(b)ϕ(a), (a,b ∈A ),

which is equivalent to the following condition

ϕ(a2) = (ϕ(a))2, (a ∈A ).

If A and B are C∗-algebras, then a linear map ϕ : A →B is called a Jordan ∗-homomorphism if it

is a Jordan homomorphism and

ϕ(a∗) = (ϕ(a))∗ (a ∈A ).

Evidently, every homomorphism or anti-homomorphism is a Jordan homomorphism. The con-

verse is true in some case. Particularly, a Jordan homomorphism ϕ : A → B is a homomorphism

or an anti-homomorphism if B is an integral domain, by [51], or when B is a prime algebra, by

[44]. For example, as we know, a Banach algebra B(X ) of all bounded linear operators on a Banach

space X is prime, so a Jordan homomorphism ϕ : B(X ) → B(Y ) is either a homomorphism or an

anti-homomorphism.
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1.2 Kaplansky’s conjecture and some partial results

In preserver problems the characterization of a map ϕ : A → B between Banach algebras A and

B is demanded, considering that it leaves a certain property, a particular relation, or even a subset

invariant. We call it linear preserver problems whenϕ is supposed to be linear and we call it nonlin-

ear preserver problems when we don’t assume any algebraic condition like linearity or additivity or

multiplicativity for ϕ. In all cases that have been studied by now, nonlinear preservers are proved

to be linear or conjugate linear perhaps plus an element of the target algebra.

In this section we will provide some historical facts and a few important results of preserver prob-

lems.

The first results are about the preservers of matrices. As usual, we denote by Mn(C) the algebra of all

n×n complex matrices. In 1897, Frobenius [34] characterized linear mapsϕ : Mn(C) → Mn(C) that

preserve the determinant of matrices. Later, in 1959, Marcus and Moyls [62] improved this result.

They described the cases when a linear map ϕ : Mn(C) → Mn(C) preserves the rank of all matrices,

or the determinant or the spectrum of all hermitian matrices. In the last case the representation of

ϕ is the following

ϕ(T ) =U TU−1 or ϕ(T ) =U T tr U−1, (T ∈ Mn(C)),

where U is a non-singular matrix and T tr is the transpose of T . We remark here that the extensions

of this result to the case of arbitrary field F instead of the complex numbers C have been obtained

recently; see [2, 32, 75]

Almost simultaneously, in 1967-1968, Gleason, Kahane and Żelazko [37, 55] have demonstrated

that if A is a commutative Banach algebra and B is a semisimple commutative Banach algebra,

then every unital, invertibility preserving linear map ϕ : A → B is a homomorphism. After that,

in the same year, Żelazko [83] have showed that the assumption of commutativity of A can be

removed.

Theorem 1.2.1. Let A be a Banach algebra and B be a semisimple commutative Banach algebra.

Then every unital, invertibility preserving linear map ϕ : A →B is a homomorphism.

In 1970, motivated by these results, Kaplansky [56] asked when must an invertibility preserving

linear map ϕ : A → B be a Jordan homomorphism. In this general form, the question does not

have a positive answer. Example 1.2.2 shows that without the surjectivity,ϕ need not to be a Jordan

homomorphism. Example 1.2.3 shows that without the semisimplicity of A and B, the map ϕ

need not be a Jordan homomorphism.

Example 1.2.2. Let ϕ : M2(C) →M4(C) be defined by

ϕ(X ) =
[

X X −X tr

0 X

]
, (X ∈M2(C)).
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Then ϕ is a unital linear map such that σ(ϕ(X )) =σ(X ), i.e. ϕ is invertibility preserving. But

ϕ(X 2)− (ϕ(X ))2 =
[

0 (X −X tr )2

0 0

]
, (X ∈M2(C)).

Hence, ϕ is not a Jordan homomorphism.

Example 1.2.3. Consider the Banach algebra

A =
{[

X Z

0 Y

]
: X ,Y , Z ∈M2(C)

}
.

Since

σ

([
0 Z

0 0

])
= {0}, (Z ∈M2(C)),

the algebra A is not semisimple. Now, define the linear map ϕ : A →A by

ϕ(W ) :=
[

X Z

0 Y tr

]
, for W =

[
X Z

0 Y

]
∈A .

We have σ(ϕ(W )) =σ(W ) and ϕ is unital, i.e. ϕ is invertibility preserving, but

ϕ(W 2)− (ϕ(W ))2 =
[

0 Z (Y −Y tr )

0 0

]
, (W ∈A ).

Hence, ϕ is not a Jordan homomorphism.

In the light of the preceding two examples and several partial positive results, Kaplansky’s question

was reformulated by Aupetit [7] as follows.

Conjecture 1.2.4 (Kaplansky’s Conjecture). Let A and B be semisimple Banach algebras. Then

every surjective unital linear mapϕ : A →B that preserves invertibility is a Jordan homomorphism.

Let us remark that the converse of this conjecture is true even for a more general case. If A and B

are complex Banach algebras with unit andϕ : A →B is a surjective Jordan homomorphism, then

ϕ is unital and preserves invertibility; see for instance [79, Proposition 1.3].

This conjecture can be observed as a spectrum compressing problem. There is also another variant

of Kaplansky’s conjecture, where a spectrum preserving problem is considered.

Conjecture 1.2.5. Let A and B be semisimple Banach algebras. Then every surjective linear map

ϕ : A →B that preserves the spectrum is a Jordan isomorphism.

Kaplansky’s conjecture is still open even when A and B are C∗-algebras, but for some special cases

the answer is positive and there are many partial results. Let us introduce the most important ones.
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A useful way to treat Kaplansky’s question for Banach algebras of all bounded linear operators

on a Banach space is to reduce it to the problem of characterizing linear maps preserving rank

one operators. That is what Jafarian and Sourour did in [52] and answered positively Kaplansky’s

question for this case; see Theorem 1.2.8. Let us mention the steps that they followed. First they

proved the following lemma, which is a spectral characterization of rank one operators.

Lemma 1.2.6 (Jafarian-Sourour [52], 1986). Let R ∈ B(X ), R 6= 0. The following conditions are

equivalent.

(i) R has rank 1.

(ii) σ(T +R)∩σ(T +λR) ⊆σ(T ) for every T ∈B(X ) and every λ ∈C such that λ 6= 1.

If we have a surjective spectrum preserving linear map ϕ : B(X ) → B(Y ), then with the aid of

Lemma 1.2.6 we conclude that ϕ maps rank one operators to rank one operators. We remind that

a rank one operator in B(X ) has the following form

(x ⊗ f )(y) := 〈y, f 〉x, (y ∈ X ),

for some nonzero x ∈ X and f ∈ X ∗, where 〈y, f 〉 stands for f (y). The next step in [52] was char-

acterizing maps preserving operators of rank one. We present it here, because it is an important

result itself.

Theorem 1.2.7 (Jafarian-Sourour [52], 1986). If a bijective linear map ϕ : F (X ) → F (Y ) preserves

rank one operators, then one of following situations hold.

(i) There exist isomorphisms A ∈B(X ,Y ) and B ∈B(X ∗,Y ∗) such that

ϕ(x ⊗ f ) = Ax ⊗B f , x ∈ X , f ∈ X ∗.

(ii) There exist isomorphisms C ∈B(X ∗,Y ) and D ∈B(X ,Y ∗) such that

ϕ(x ⊗ f ) =C f ⊗Dx, x ∈ X , f ∈ X ∗.

And finally, with the aid of this characterization, Jafarian and Sourour proved the following theo-

rem, which is a positive answer to the Kaplansky’s conjecture for the case of Banach algebras of

bounded linear operators on a Banach space.

Theorem 1.2.8 (Jafarian-Sourour [52], 1986). A surjective linear map ϕ : B(X ) → B(Y ) preserves

the spectrum if and only if ϕ has one of the following forms.

(i) There exists an isomorphism A ∈B(X ,Y ) such that

ϕ(T ) = AT A−1, (T ∈B(X )).
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(ii) There exists an isomorphism B ∈B(X ∗,Y ) such that

ϕ(T ) = BT ∗B−1, (T ∈B(X )).

This case can occur only if both X and Y are reflexive.

Let us explain the last sentence. Ifϕ takes form (ii), the surjectivity ofϕ implies that every operator

on X ∗ is a dual of an operator on X . So, if we consider rank one operators f ⊗G : X ∗ → X ∗ with fixed

nonzero f ∈ X ∗ and arbitrary G ∈ X ∗∗, we can say that there exists T ∈B(X ) such that G(ϕ) f (x) =
(T ∗(ϕ))(x) =ϕ(T x) for all x ∈ X and ϕ ∈ X ∗. If we fix x0 such that f (x0) = 1, we obtain that G(ϕ) =
ϕ(T x0) for all ϕ ∈ X ∗, which means that X is reflexive. As Y must be isomorphic to X ∗, so Y is

reflexive too.

This result has been extended in many ways, but we would like to mention just a few of them. In

[23] Brešar and Šemrl characterized surjective linear spectral isometries ϕ : B(X ) →B(X ).

Theorem 1.2.9 (Brešar-Šemrl [23], 1996). A surjective linear map ϕ : B(X ) → B(X ) is a spectral

isometry if and only if there is α ∈C of modulus one such that ϕ has one of the following forms.

(i) There exists an isomorphism A ∈B(X ) such that

ϕ(T ) =αAT A−1, (T ∈B(X )).

(ii) There exists an isomorphism B ∈B(X ∗, X ) such that

ϕ(T ) =αBT ∗B−1, (T ∈B(X )).

This case can occur only if X is reflexive.

To prove this theorem they showed thatϕ preserves nilpotents in both directions and after they ap-

plied the result of Šemrl [74], where the description of all surjective linear maps preserving nilpo-

tent operators in both directions on a Banach space X is given. In [33] Fošner and Šemrl improved

this result for the case of surjective linear operators that are both spectrally bounded and spectrally

bounded from bellow.

Theorem 1.2.10 (Fošner-Šemrl [33], 2005). Let ϕ : B(X ) → B(X ) be a surjective linear map. Sup-

pose that there exist positive constants m and M such that mr(T ) ≤ r(ϕ(T )) ≤ Mr(T ) for every

T ∈ B(X ). Then there exist a spectrally bounded linear functional f : B(X ) → C and a nonzero

complex number α ∈C such that ϕ has one of the following forms.

(i) There exists an isomorphism A ∈B(X ,Y ) such that

ϕ(T ) =αAT A−1 + f (T )I , (T ∈B(X )).
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(ii) There exists an isomorphism B ∈B(X ∗,Y ) such that

ϕ(T ) =αBT ∗B−1 + f (T )I , (T ∈B(X )).

This case can occur only if X is reflexive.

Let us make some comments about this result. First, when X = H is an infinite dimensional

Hilbert space, the second term disappears, as by [64, Corollary 3.9] the only spectrally bounded

linear functional f : B(H ) → C is the zero functional. But this is not true for general Banach

spaces. We know that there exist an infinite dimensional Banach space X such that B(X ) has a

nonzero multiplicative linear functional. It maps every element of the algebra into its spectrum, so

it is spectrally bounded. The converse of this theorem in general is not true. If ϕ takes one of the

forms, then obviously ϕ is spectrally bounded, but it does not need to be surjective nor spectrally

bounded below. However, it turns out that if α 6= − f (I ), then ϕ is bijective and spectrally bounded

below. The details are in the article [33].

Another extension of the Theorem 1.2.8 was obtained by Sourour in [79]. He characterized surjec-

tive linear maps ϕ : B(X ) →B(Y ) that preserve invertibility in just one direction.

Theorem 1.2.11 (Sourour [79], 1996). Let ϕ : B(X ) → B(Y ) be a unital surjective linear map that

preserves invertibility. Then either ϕ vanishes on F (X ) or ϕ is injective. In the latter case ϕ has one

of the following forms.

(i) There exist isomorphisms A ∈B(X ,Y ) and B ∈B(Y , X ) such that

ϕ(T ) = AT B , (T ∈B(X )).

(ii) There exist isomorphisms A ∈B(X ∗,Y ) and B ∈B(Y , X ∗) such that

ϕ(T ) = AT ∗B , (T ∈B(X )).

This case can occur only if both X and Y are reflexive.

First we note that if ϕ is unital then B = A−1. Then, we remark that although, by Lemma 1.1.4,

the linear spectrum-preserving maps ϕ : B(X ) → B(Y ) are necessarily injective, it is not true for

invertibility-preserving maps. Recently, Argyros and Haydon [4] have constructed a Banach space

X such that B(X ) = C1+K (X ), where K (X ) denotes the closed ideal of all compact operators

on X . For this Banach space X , the following linear functional on B(X ) preserves invertibility,

vanishes on K (X ) and is not injective:

f (λ1+K ) =λ, (K ∈K (X )).

However, as it was shown in [79], if X =H is a separable infinite-dimensional Hilbert space, then

a surjective linear spectrum-preserving map ϕ : B(H ) →B(Y ) is injective.

There is an improvement of Lemma 1.2.6 on spectral characterization of rank one operators in [79].
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Theorem 1.2.12 (Sourour [79], 1996). For an operator R ∈B(X ), the following conditions are equiv-

alent.

(i) R has at most rank one.

(ii) For every T ∈B(X ) and all distinct scalars α,β ∈C,

σ(T +αR)∩σ(T +βR) ⊆σ(T ). (1.2.5)

(iii) Condition (1.2.5) is satisfied for every T ∈B(X ) of rank at most two.

(iv) For every T ∈B(X ), there exists a compact subset KT of the complex plane, such that

σ(T +αR)∩σ(T +βR) ⊆ KT , (1.2.6)

for all distinct scalars α,β ∈C.

(v) Condition (1.2.6) is satisfied for every T ∈B(X ) of rank at most two.

Another big achievement in attempts to answer Kaplansky’s question was done by Aupetit in [8].

He showed that Kaplansky’s conjecture holds true if A and B are von Neumann algebras.

Theorem 1.2.13 (Aupetit [8], 2000). Let A and B be two von Neumann algebras. Then every sur-

jective linear map ϕ : A →B that preserves the spectrum is a Jordan isomorphism.

A similar result is obtained for Jordan-von Neumann algebras. As in the case of Banach algebras

of all bounded linear operators, in this case, the problem is reduced to a characterization of linear

maps preserving idempotents. A spectral characterization of idempotent elements is obtained.

Theorem 1.2.14 (Aupetit [8], 2000). Let A be a semisimple Banach (or Jordan-Banach) algebra. The

following properties are equivalent.

(i) a is an idempotent element of A .

(ii) σ(a) ⊂ {0,1} and there exist r,C > 0 such that

σ(x) ⊂σ(a)+C‖x −a‖, for ‖x −a‖ < r.

With the aid of this characterization it is concluded that a spectrum-preserving surjective linear

map ϕ transforms a set of orthogonal idempotents of A into a set of orthogonal idempotents of

B. And after, to prove the Theorem 1.2.13, Aupetit uses the fact that in a von-Neumann algebra

every self-adjoint element is the limit of a sequence of linear combinations of orthogonal idempo-

tents; see [73, Proposition 1.3.1 and Lemma 1.7.5]. The same fact is true for Jordan-von Neumann

algebras; see [38, Proposition 4.2.3], and the proof of the Theorem 1.2.13 runs almost the same way

for this case.

Another interesting and important result belongs to Brešar, Fošner and Šemrl [25]. They have

showed that Kaplansky’s conjecture holds true if A and B are semisimple Banach algebras and

if A has a big socle.
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Theorem 1.2.15 (Brešar-Fošner-Šemrl [25], 2003). Let A and B be semisimple Banach algebras

and let ϕ : A →B be a unital bijective linear operator that preserves invertibility. Then

ϕ−1(ϕ(a2)− (ϕ(a))2) ·Soc(A ) = 0 (a ∈A ).

In particular, if Soc(A ) is an essential ideal of A , then ϕ is a Jordan isomorphism.

In a primitive algebra every nonzero ideal is essential and as a primitive algebra is prime, so, using

Herstein’s result [44] about Jordan homomorphisms, we obtain the following corollary, which is a

generalization of Sourour’s Theorem 1.2.11 from [79].

Corollary 1.2.16 (Brešar-Fošner-Šemrl [25], 2003). Let A be a primitive Banach algebra with nonzero

socle, and let B be a semisimple Banach algebra. If ϕ : A → B is a unital bijective linear operator

that preserves invertibility, then ϕ is either an isomorphism or anti-isomorphism.

1.3 Preservers of different moduli of operators

As two chapters of this thesis are devoted to the preservers of moduli of operators, we discuss in

this section the important results obtained in this specific case of preservers. Let d(·) stand for

any of the spectral quantities m(·), q(·), M(·) and γ(·). We say that a map ϕ : A → B preserves the

spectral quantity d(·) if

d(ϕ(x)) = d(x), (x ∈A ).

First steps have been done by Mbekhta in [65, 66]. In [65] he has characterized surjective unital

linear maps ϕ : B(H ) →B(H ) that preserve the reduced minimum modulus.

Theorem 1.3.1 (Mbekhta [65], 2007). If ϕ : B(H ) → B(H ) is a surjective unital linear map, then

γ(ϕ(T )) = γ(T ) for every T ∈B(H ) if and only if there exists a unitary operator U ∈B(H ) such that

ϕ takes one of the following forms

ϕ(T ) =U TU∗ or ϕ(T ) =U T tr U∗, (T ∈B(H )),

where T tr denotes the transpose of T with respect to an arbitrary but a fixed orthonormal basis in

H .

Then he obtained a similar result for the preservers of the minimum or the surjectivity modulus in

[66].

Theorem 1.3.2 (Mbekhta [66], 2010). Let ϕ : B(H ) → B(H ) be a surjective unital linear map.

Then the following conditions are equivalent.

(i) m(ϕ(T )) = m(T ) for every T ∈B(H ).

(ii) q(ϕ(T )) = q(T ) for every T ∈B(H ).
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(iii) There exists a unitary operator U ∈B(H ) such that

ϕ(T ) =U TU∗, (T ∈B(H )).

After these papers Mbekhta stated a conjecture that these results are true without the assumption

of ϕ being unital. In [15] Bourhim, Burgos and Shulman have proved this conjecture for the more

general case of C∗-algebras.

Theorem 1.3.3 (Bourhim-Burgos-Shulman [15], 2010). Let A be a semisimple Banach algebra and

let B be a C∗-algebra. If ϕ : A →B is a surjective linear map for which

d(ϕ(x)) = d(x), (x ∈A ),

then A (for its norm and some involution) is a C∗-algebra, andϕ is an isometric Jordan ∗ -isomorphism

multiplied by a unitary element of B.

Let us make couple of comments about this theorem. As we know from Kadison’s paper [54], a

surjective linear map between two C∗-algebras A and B is an isometry if and only if it is a Jordan
∗-isomorphism multiplied by a unitary element in B, so we can reformulate the statement of The-

orem 1.3.3 and say that it claims that the map ϕ is an isometry. Also we want to mention that the

role of A or B being a C∗-algebra, is symmetrical since it is proved in [15] that a surjective linear

map ϕ : A → B between Banach algebras is bijective, provided it preserves the spectral quantity

d(·).

In [15] another result for C∗-algebras A and B is obtained, where a linear map ϕ : A → B is

supposed unital instead of being surjective and, of course, it is supposed to preserve the spectral

quantity d(·).

Theorem 1.3.4 (Bourhim-Burgos-Shulman [15], 2010). Let A and B be C∗-algebras. If ϕ : A →
B is a unital linear map such that d(x) = d(ϕ(x)) for all x ∈ A , then ϕ is an isometric Jordan ∗-

homomorphism.

It should be noted that the converses of these theorems are not true. Before giving an example,

let us first note that every unital anti-homomorphism ϕ : A → B between C∗-algebras A and

B satisfies σ(xx∗) = σ(ϕ(xx∗)) = σ(ϕ(x∗)ϕ(x)), so, by (1.1.3), m(ϕ(x)) = q(x) and q(ϕx)) = m(x),

hence M(ϕ(x)) = M(x) and, by (1.1.4), γ(ϕ(x)) = γ(x) for every x ∈ A . Now we define the linear

map ϕ : T 7→ T tr on B(H ), where T tr is the transpose of T with respect to an arbitrary but a

fixed orthonormal basis in an infinite-dimensional complex Hilbert space H . We can see that ϕ is

an isometric Jordan ∗-isomorphism, but it does not preserve neither the minimum modulus nor

the surjectivity modulus, although it preserves the maximum modulus and the reduced minimum

modulus. However, we note that if either in A or in B every left (right) invertible element is invert-

ible, particularly if H is finite-dimensional, then the mapϕ preserves also the minimum modulus

and the surjectivity modulus.
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The main tool to prove these results is the following lemma, where the characterization of hermi-

tian elements in a Banach algebra in terms of the minimum, surjectivity, maximum and reduced

minimum moduli is given.

Lemma 1.3.5 (Bourhim-Bourgos-Shulman [15], 2010). Let A be an element of a Banach algebra

A . The following assertions are equivalent.

(i) a is hermitian.

(ii) ‖1+ i t a‖ = 1+o(t ) as t →∞.

(iii) d(1+ i t a) = 1+o(t ) as t →∞.

(iv) d(1+ i t a) ≥ 1+o(t ) as t →∞.

The last theorem that we are going to cite in this section is the result of Bourhim from [13], where

the characterization of additive surjective maps between Banach algebras B(X ) and B(Y ) that

preserve any of the minimum, surjectivity, maximum or reduced minimum moduli is obtained.

Theorem 1.3.6 (Bourhim [13], 2012). An additive surjective map ϕ : B(X ) → B(Y ) preserves the

spectral quantity d(·) if and only if ϕ has one of the following forms.

(i) There are bijective isometries U : X → Y and V : Y → X both linear or both conjugate linear

such that

ϕ(T ) =U T V , (T ∈B(X )).

(ii) There are bijective isometries U : X ∗ → Y and V : Y → X ∗ both linear or both conjugate linear

such that

ϕ(T ) =U T ∗V , (T ∈B(X )).

This case can occur only if both X and Y are reflexive.

We note that the same result for the minimum modulus and the surjectivity modulus was proved

also by Mbekhta-Oudghiri in [67].
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Chapter 2

New approaches

2.1 Nonlinear maps preserving the minimum and surjectivity moduli

In this chapter we will discuss the results obtained in the thesis, the motivations for their consider-

ation and we will provide short schemes of the proofs of main theorems. This section is about the

Chapter 3.

The preserver problems that have been considered in the previous chapter had this general for-

mulation: Find a characterization of a surjective map ϕ : A → B between Banach semisimple

algebras A and B if for every element a in A a has some property if (and only if) ϕ(a) has it.

There is also another type of a problem, where it is supposed that a −b has some property if (and

only if) ϕ(a)−ϕ(b) has it, for every a,b ∈ A . Chapter 3 and Chapter 4 are devoted to this kind of

nonlinear preserver problems between Banach algebras B(X ) and B(Y ).

One of the first results for such a problem was obtained in [57] by Kowalski, and Słodkowski. They

have extended Gleason-Kahane-Żelazko theorem as follows.

Theorem 2.1.1 (Kowalski-Słodkowski [57], 1980). Let a functional f : A →C satisfy f (0) = 0 and

f (x)− f (y) ∈σ(x − y), (x, y ∈A ).

Then f is linear and multiplicative.

Inspired by this in [43] Havlicek and Šemrl asked themselves to find the characterization of bijec-

tive maps ϕ that satisfy the condition

ϕ(S)−ϕ(T ) is invertible ⇐⇒ S −T is invertible (2.1.1)

for matrix or operator algebras. In fact for the finite-dimensional case they have obtained more

general results for spaces of rectangular matrices. Instead of saying that a matrix is invertible, we

will say that it is of full rank; this will also be convenient for rectangular matrices. We denote by
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Mm×n(F) the vector space of matrices over an arbitrary field F and Tσ := [σ(ti j )], where T = [ti j ] ∈
Mm×n(F) and σ is an automorphism of the field F.

Theorem 2.1.2 (Havlicek-Šemrl [43], 2006). Let F be a field with at least three elements and m,n

integers with m ≥ n ≥ 2. Assume that ϕ : Mm×n(F) → Mm×n(F) is a bijective map such that for every

S,T ∈ Mm×n(F) we have

ϕ(S)−ϕ(T ) is of full rank ⇐⇒ S −T is of full rank.

Then there exist an invertible matrix A ∈ Mm(F), an invertible matrix B ∈ Mn(F), a matrix R ∈
Mm×n(F) and an automorphism σ : F→ F such that

ϕ(T ) = ATσB +R, (T ∈ Mm×n(F)).

If m = n, then we have the additional possibility that

ϕ(T ) = A(Tσ)tr B +R, (T ∈ Mn(F)),

where A,B ,R ∈ Mn(F) with A and B invertible and σ is an automorphism of F.

We see that in the finite-dimensional case the condition (2.1.1) has implied the semilinearity of the

maps up to a translation, while in the infinite-dimensional case the maps are proved to be linear or

conjugate-linear up to a translation, as we see in the following theorem, where the characterization

of bijective maps ϕ : B(H ) →B(H ) that satisfy (2.1.1) is given.

Theorem 2.1.3 (Havlicek-Šemrl [43], 2006). Let H be a Hilbert space and ϕ : B(H ) → B(H ) be

a bijective map such that for every pair S,T ∈ B(H ) the operator S −T is invertible if and only if

ϕ(S)−ϕ(T ) is invertible. Then there exist R ∈B(H ) and invertible A,B ∈B(H ) such that

ϕ(T ) = AT #B +R, (T ∈B(H )),

where T # stands for T , or T tr , the transpose with respect to an arbitrary but fixed orthonormal basis,

or T ∗, the usual adjoint of T in the Hilbert space sense, or (T tr )∗.

In[48] Hou and Huang extended this result to the case of maps ϕ between Banach algebras B(X )

and B(Y ).

Theorem 2.1.4 (Hou-Huang [48], 2009). Let X ,Y be Banach spaces and ϕ : B(X ) → B(Y ) be a

bijective map such that for every pair S,T ∈B(X ) the operator S−T is invertible if and only ifϕ(S)−
ϕ(T ) is invertible. Then one of the following situations holds:

(i) There is an operator R ∈ B(Y ) and there are bijective continuous mappings A : X → Y and

B : Y → X , either both linear or both conjugate linear, such that

ϕ(T ) = AT B +R, (T ∈B(X )).
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(ii) There is an operator R ∈ B(Y ) and there are bijective continuous mappings A : X ∗ → Y and

B : Y → X ∗, either both linear or both conjugate linear, such that

ϕ(T ) = AT ∗B +R, (T ∈B(X )).

This case may occur only if both X and Y are reflexive.

The main tool to prove all these mentioned theorems is the characterization of adjacent operators.

Recall that two operators (matrices) S and T are said to be adjacent if S −T is a rank one opera-

tor (matrix). We will cite here the result of Hou and Huang for the more general case of Banach

algebras B(X ). They have used the same proof of Havlicek and Šemrl, who had obtained the same

characterization for the Banach algebra B(H ) and the spaces Mm×n(F).

Lemma 2.1.5 (Hou-Huang [48], 2009). For two different operators S and T in B(X ), the following

statements are equivalent.

(i) S and T are adjacent.

(ii) There exists R ∈B(X )\{S,T } such that for every N ∈B(X ), N −R is invertible yields that N −S

or N −T is invertible.

Every rank one operator is adjacent to zero, every rank two operator is adjacent to some rank one

operator, etc. So, if ϕ is a surjective map satisfying (2.1.1), then, by this lemma, we conclude that ϕ

maps the ideal of all finite rank operators F (X ) onto the ideal of all finite rank operators F (Y ). An-

other crucial role in the proofs of the Theorem 2.1.3 and the Theorem 2.1.4 belongs to the following

result from [70].

Lemma 2.1.6 (Petek-Šemrl [70], 2002). Assume that X and Y are Banach spaces of dimensions at

least 2, and let ϕ be a bijective map from F (X ) into F (Y ) such that whenever S,T are operators in

F (X ) then one has

ϕ(S)−ϕ(T ) has rank one ⇐⇒ S −T has rank one.

Then one of the following situations hold:

(i) There are an automorphism σ of C, R ∈B(Y ), and bijective σ-semilinear maps A : X → Y and

B : X ∗ → Y ∗ such that T 7→ϕ(T )−R is an additive map defined by

ϕ(x ⊗ f )−R = Ax ⊗B f , (x ∈ X , f ∈ X ∗).

(ii) There are an automorphism σ of C, R ∈ B(Y ), and bijective σ-semilinear maps A : X → Y ∗

and B : X ∗ → Y such that T 7→ϕ(T )−R is an additive map defined by

ϕ(x ⊗ f )−R = B f ⊗ Ax, (x ∈ X , f ∈ X ∗).
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Inspired by these results, we asked ourselves what would be the characterization of surjective maps

ϕ : B(X ) →B(Y ) that satisfy one of the following conditions:

c(ϕ(S)−ϕ(T )) = c(S −T ), (S,T ∈B(X )), (2.1.2)

or

c(ϕ(S)+ϕ(T )) = c(S +T ), (S,T ∈B(X )), (2.1.3)

where c(·) denotes either the minimum modulus, or the surjectivity modulus, or the maximum

modulus. The Chapter 3 of this thesis is devoted to this problem and here is the main result that

we have obtained.

Theorem 2.1.7 (Bourhim-Mashreghi-Stepanyan [20], 2014). Assume thatϕ is a surjective map from

B(X ) to B(Y ) satisfying (2.1.2). Then one of the following situations hold:

(i) There are R ∈ B(Y ) and bijective isometries U : X → Y and V : Y → X , either both linear or

both conjugate linear, such that

ϕ(T ) =U T V +R, (T ∈B(X )).

(ii) There are bijective isometries U : X ∗ → Y and V : Y → X ∗, either both linear or both conjugate

linear, such that

ϕ(T ) =U T ∗V +R, (T ∈B(X )).

This case can occur only if both X and Y are reflexive.

If a surjective map ϕ : B(X ) → B(Y ) satisfies (2.1.3), then we have the same conclusion with R = 0

in the forms.

If we remember the facts about moduli, that have been discussed in the first chapter, then we can

say that if ϕ satisfies (2.1.2), then in particular it satisfies

S −T ∈Ω(X ) ⇐⇒ ϕ(S)−ϕ(T ) ∈Ω(X ) (2.1.4)

where Ω(X ) stands either for ΩLB(X ), or ΩSurj(X ), or ΩLB-or-Surj(X ). And likewise, if ϕ satisfies

(2.1.3), then it also satisfies

S +T ∈Ω(X ) ⇐⇒ ϕ(S)+ϕ(T ) ∈Ω(X ).

To prove Theorem 2.1.7, we have shown that a result, similar to Lemma 2.1.5, holds true for our

cases. The proof of this lemma is done in a constructive way.

Lemma 2.1.8 (Bourhim-Mashreghi-Stepanyan [20], 2014). For two different operators S and T in

B(X ), the following statements are equivalent.

(i) S and T are adjacent.
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(ii) There is an operator R ∈ B(X )\{S,T } such that either N − S ∈ Ω(X ) or N −T ∈ Ω(X ) for all

N ∈Ω(X )+R.

Now we can give a short sketch of the proof of Theorem 2.1.7. Let ϕ : B(X ) →B(Y ) be a surjective

map that satisfies the condition (2.1.2). First we prove that ϕ is injective, then by Lemma 2.1.8 we

conclude that ϕ maps the ideal of all finite rank operators F (X ) onto the ideal of all finite rank

operators F (Y ), and so, as in [43] and [48], we arrive at a point, where we can use Lemma 2.1.6

and get the forms of ϕ on rank one operators. With these forms, we prove that ϕ(1) is invertible.

For a fixed invertible operator T0 ∈B(X ), we define a map φ(T ) :=ϕ(T0T ), which also satisfies the

conditions of Theorem 2.1.7, so φ(1) =ϕ(T0) is invertible and we conclude thatϕ preserves invert-

ibility. As ϕ−1 also satisfies the conditions of Theorem 2.1.7, so, in fact, ϕ preserves invertibility

in both directions. With another simple substitution ψ(S) :=ϕ(S +T )−ϕ(T ) for an arbitrary fixed

operator T ∈B(X ), which also satisfies the conditions of Theorem 2.1.7, we conclude that S −T is

invertible if and only ifψ(S−T ) =ϕ(S)−ϕ(T ) if invertible, hence we see that the conditions of Hou

and Huang’s Theorem 2.1.4 are satisfied, and we have the forms of ϕ mentioned therein. The last

step to obtain the exact same forms of our theorem is done by noticing the following equality

‖T ‖−1 = c
(
T −1)= c

(
ϕ(T −1)−ϕ(0)

)= c
(

AT −1B
)= ‖B−1T A−1‖−1

,

for an invertible operator T ∈B(X ) and using the following lemma cited from [13].

Lemma 2.1.9. For two bijective transformations A ∈B(X ,Y ) and B ∈B(Y , X ), the following state-

ments are equivalent.

(i) ‖AT B‖ = ‖T ‖ for all invertible operators T ∈B(X ).

(ii) A and B are isometries multiplied by complex scalars λ and µ such that λµ= 1.

The proof for the case when a surjective map ϕ : B(X ) →B(Y ) satisfies (2.1.3) is proved the same

way. The Lemma 2.1.8 and the Theorem 2.1.7 are proved also for the cases when as Ω(X ) is taken

the subset of all injective operators in B(X ), noted by ΩInj(X ), or the subset of all injective or sur-

jective operators in B(X ), noted byΩInj-or-Surj(X ). And at the end of the discussion of the Chapter

3, we would like to mention that the finite-dimensional case of matrix algebra Mn(C) is also con-

sidered. As a finite-dimensional operator (a matrix) is injective or surjective if and only if it is

invertible, then the condition c(ϕ(S)−ϕ(T )) = c(S −T ) for all S,T ∈ Mn(C) is equivalent to (2.1.1)

for all S,T ∈ Mn(C), so it is possible to use Havlicek and Šemrl’s Theorem 2.1.2, but in this case we

obtain additionally that the automorphism σ :C→C must be the identity or conjugation map.
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2.2 Nonlinear maps preserving the reduced minimum modulus of

operators

The natural extension of the results described in the previous section would be characterizing sur-

jective maps ϕ : B(X ) →B(Y ) that satisfy

γ(ϕ(S)−ϕ(T )) = γ(S −T ), (S,T ∈B(X )), (2.2.5)

or

γ(ϕ(S)+ϕ(T )) = γ(S +T ), (S,T ∈B(X )). (2.2.6)

Chapter 4 is devoted to this problem. Before stating the main result let us note that if ϕ satisfies

(2.2.6) then it automatically satisfies (2.2.5), because in this case ϕ(−T ) = −ϕ(T ) for all T ∈ B(X ),

as γ(ϕ(−T )+ϕ(T )) = γ(−T +T ) = ∞. And also, if ϕ satisfies (2.2.5), then it is injective, as when

ϕ(S) =ϕ(T ), then ∞= γ(ϕ(S)−ϕ(T )) = γ(S −T ), hence S = T . So we can assume that our map ϕ is

bijective. Our result is obtained for the case, when ϕ is additionally supposed to be bicontinuous.

Theorem 2.2.1 (Mashreghi-Stepanyan [63], 2016). A bicontinuous bijective map ϕ from B(X ) into

B(Y ) satisfies (2.2.5) if and only if one of the following situations hold:

(i) There are R ∈ B(Y ) and bijective isometries U : X → Y and V : Y → X , either both linear or

both conjugate linear, such that

ϕ(T ) =U T V +R, (T ∈B(X )).

(ii) There are R ∈ B(Y ) and bijective isometries U : X ∗ → Y and V : Y → X ∗, either both linear or

both conjugate linear, such that

ϕ(T ) =U T ∗V +R, (T ∈B(X )).

This case can occur only if both X and Y are reflexive.

If a bijective bicontinuous map ϕ : B(X ) →B(Y ) satisfies (2.2.6), then we have the same conclusion

with R = 0 in the forms.

Here is the short sketch of the proof of this theorem. We remark that ϕ−ϕ(0) also satisfies the

conditions of the theorem, so, without loss of generality, we may assume that ϕ(0) = 0. The first

and important step is to show that

M(ϕ(T )) > 0 ⇐⇒ M(T ) > 0, (T ∈B(X )). (2.2.7)

We used an idea from [13] to prove this equivalence. We take an operator T0 ∈ B(X ) such that

M(T0) > 0 and assuming that M(ϕ(T0)) = 0, we show that there exist x ∈ X and f ∈ X ∗ such that

r ≥ δγ(T0 −ϕ−1(r x ⊗ f )) = δM(T0 −ϕ−1(r x ⊗ f ))
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for all sufficiently small numbers r . As we have supposed thatϕ is bicontinuous, so, by the contin-

uousness of the maximum modulus, we obtain that the right side tends to M(T0) > 0 as r goes to

zero, hence we get a contradiction.

As the next step, we define a map ψ(S) := ϕ(S +T )−ϕ(T ), for an arbitrary fixed T ∈ B(X ). ψ also

satisfies the conditions of Theorem 2.2.1, hence (2.2.7) holds true for it and by replacing S by S −T

we get

M(ψ(S −T )) = M(ϕ(S)−ϕ(T )) > 0 ⇐⇒ M(S −T ) > 0

for all S,T ∈ B(X ). Taking into consideration the fact, that when the maximum modulus of an

operator is positive, then it is equal to the reduced minimum modulus of this operator and the

condition (2.2.5), we get

M(ϕ(S)−ϕ(T )) = M(S −T ), (S,T ∈B(X )).

From here, by Theorem 2.1.7, we obtain the forms for ϕ, where R = ϕ(0). The last part of the

theorem follows easily from the remark, that ϕ(0) is necessarily 0, when ϕ satisfies (2.2.6).

We want to finish the discussion of the Chapter 4 by noting that the finite dimensional case is also

obtained. The proof is similar to this one, it uses the results for the finite dimensional case obtained

in [20].

2.3 Nonlinear maps between Banach algebras preserving the spectrum

In this section we will discuss the Chapter 5. It is devoted to another kind of nonlinear preserver

problem. The question is to describe surjective maps ϕ between semisimple Banach algebras A

and B that satisfy the following condition

σ
(
ϕ(a)ϕ(b)

)=σ(ab), (a,b ∈A ). (2.3.8)

The motivation was the following result of Molnár [69].

Theorem 2.3.1 (Molnár [69], 2001). Let H be a Hilbert space. A surjective map ϕ : B(H ) →B(H )

satisfies

σ
(
ϕ(T )ϕ(S)

)=σ(T S), (T,S ∈B(H )),

if and only if there exists an invertible operator A ∈B(H ) such that either

ϕ(T ) = AT A−1, (T ∈B(H )),

or

ϕ(T ) =−AT A−1, (T ∈B(H )).
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There have been many extensions of this result; see for instance [1, 27, 40–42, 45, 47, 49, 53, 58–

61, 68, 71, 72, 80, 81].

In the Chapter 5 we have answered the question (2.3.8) assuming additionally that B has an es-

sential socle and in a more general way, considering maps ϕ1 and ϕ2.

Theorem 2.3.2 (Bourhim-Mashreghi-Stepanyan). Assume that A is semisimple and B has an es-

sential socle. If surjective maps ϕ1,ϕ2 : A →B satisfy

σ
(
ϕ1(a)ϕ2(b)

)=σ(ab), (a,b ∈A ), (2.3.9)

then the maps ϕ1ϕ2(1) and ϕ1(1)ϕ2 coincide and are Jordan isomorphisms.

We prove lemmas, which say that if surjective maps ϕ1,ϕ2 : A →B satisfy (2.3.9), then

ϕ1(rad(A )) =ϕ2(rad(A )) = rad(B),

ϕ1
(
F1(A )

)=ϕ2
(
F1(A )

)=F1(B) and ϕ1
(
Soc(A )

)=ϕ2
(
Soc(A )

)= Soc(B), (2.3.10)

so, in fact, if the conditions of the Theorem 2.3.2 are satisfied, then both Banach algebras A and B

are semisimple and have essential socles. An immediate corollary of the Theorem 2.3.2 is the case

when ϕ1 =ϕ2.

Corollary 2.3.3. Assume that A is semisimple and B has an essential socle. If a surjective map

ϕ : A → B satisfies (2.3.8), then ϕ(1) is a central invertible element of B for which ϕ(1)2 = 1 and

ϕ(1)ϕ is a Jordan isomorphism.

And, taking into consideration that a Banach algebra B(X ) is semisimple and has an essential

socle, we obtain another corollary.

Corollary 2.3.4. Two surjective maps ϕ1,ϕ2 : B(X ) → B(Y ) satisfy (2.3.9) if and only if one of the

following statements holds.

(i) There exist two bijective mappings A, B ∈ B(X ,Y ) such that ϕ1(T ) = AT B−1 and ϕ2(T ) =
BT A−1 for all T ∈B(X ).

(ii) There exist two bijective mappings A, B ∈ B(X ∗,Y ) such that ϕ1(T ) = AT ∗B−1 and ϕ2(T ) =
BT ∗A−1 for all T ∈ B(X ). This case can not occur if X or Y is not reflexive or if there is a left

invertible operator in B(X ) which is not invertible.

We omit the details of the proof of the Theorem 2.3.2. We just want to mention, that it is inspired

and uses ideas from [9, 25], where it is shown, that there is a function τ on F1(A ) such that σ(u) =
{0,τ(u)} for all u ∈F1(A ) and that

τ(au +bu) = τ(au)+τ(bu)
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for all a, b ∈ A and u ∈ F1(A ). This equality helps to prove (2.3.10) and after the linearity of ϕ1

and ϕ2. And we note that the fact of ϕ1ϕ2(1) and ϕ1(1)ϕ2 being Jordan isomorphisms, is followed

from the main result of [25], which is the Theorem 1.2.15.
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Chapter 3

Nonlinear maps preserving the minimum

and surjectivity moduli

Résumé

Soit X et Y des espaces de Banach complexes de dimension infine et soit B(X ) (resp. B(Y ))

l’algèbre de tous les opérateurs linéaires et bornés sur X (resp. sur Y ). Nous décrivons des

applications surjectives ϕ de B(X ) sur B(Y ), qui satisfont

c(ϕ(S)±ϕ(T )) = c(S ±T )

pour tous S, T ∈B(X ), où c(·) représente soit le module minimal, ou le module de surjectivité

ou le module maximal. Nous obtenons aussi des résultats analogues pour le cas de dimension

finie.

Abstract

Let X and Y be infinite-dimensional complex Banach spaces, and let B(X ) (resp. B(Y )) de-

note the algebra of all bounded linear operators on X (resp. on Y ). We describe maps ϕ from

B(X ) onto B(Y ) satisfying

c(ϕ(S)±ϕ(T )) = c(S ±T )

for all S, T ∈B(X ), where c(·) stands either for the minimum modulus, or the surjectivity mod-

ulus, or the maximum modulus. We also obtain analog results for the finite-dimensional case.

3.1 Introduction

There has been considerable interest in studying nonlinear maps on operators or matrices pre-

serving the invertibility, the spectrum and its parts. In [11], Bhatia, Šemrl and Sourour character-

ized surjective maps preserving the spectral radius of the difference of matrices. In [69], Molnár

studied maps preserving the spectrum of operator or matrix products and showed, in particu-

lar, that a surjective map ϕ on the algebra B(H ) of all bounded linear operators on an infinite-

dimensional complex Hilbert space H preserves the spectrum of operator products if and only
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if there exists an invertible operator A ∈ B(H ) such that either ϕ(T ) = AT A−1 for all T ∈ B(H )

or ϕ(T ) = −AT A−1 for all T ∈ B(H ). His results have been extended in several direction for uni-

form algebras and semisimple commutative Banach algebras, and a number of results is obtained

on maps preserving several spectral and local spectral quantities of operator or matrix product,

or Jordan product, or Jordan triple product, or difference; see for instance [16–19, 27–30, 35, 40–

43, 47, 49, 50, 53, 58, 60, 61, 68, 71, 72, 80] and the references therein.

Throughout this paper, X and Y denote infinite-dimensional complex Banach spaces, and B(X ,Y )

denotes the space of all bounded linear maps from X into Y . When X = Y , we simply write B(X )

instead of B(X , X ). The dual space of X will be denoted by X ∗, and the Banach space adjoint of

an operator T ∈B(X ) will be denoted by T ∗. In [43], Havlicek and Šemrl gave a complete charac-

terization of bijective maps ϕ on the algebra B(H ) of all bounded linear operators on an infinite-

dimensional complex Hilbert space H satisfying the condition (3.1.1). In [48], Hou and Huang

characterized surjective maps between standard operator algebras on complex Banach spaces that

completely preserve the spectrum or the invertibility in both directions. They also observed that

Havlicek and Šemrl’s result and its proof remains valid in the case of Banach spaces setting.

Theorem 3.1.1. (Havlicek-Šemrl [43], Hou and Huang [48].) A map ϕ from B(X ) onto B(Y ) satis-

fies

ϕ(S)−ϕ(T ) is invertible ⇐⇒ S −T is invertible (3.1.1)

if and only if one of the following situations hold:

(i) There is an operator R ∈ B(Y ) and there are bijective continuous mappings A : X → Y and

B : Y → X , either both linear or both conjugate linear, such that

ϕ(T ) = AT B +R, T ∈B(X ). (3.1.2)

(ii) There is an operator R ∈ B(Y ) and there are bijective continuous mappings A : X ∗ → Y and

B : Y → X ∗, either both linear or both conjugate linear, such that

ϕ(T ) = AT ∗B +R, T ∈B(X ). (3.1.3)

This case may occur only if both X and Y are reflexive.

The minimum modulus of an operator T ∈ B(X ) is m(T ) := inf{‖T x‖ : x ∈ X , ‖x‖ = 1}, and is

positive precisely when T is bounded below; i.e., T is injective and has a closed range. The sur-

jectivity modulus of T is q(T ) := sup{ε ≥ 0: εBX ⊆ T (BX ) }, and is positive if and only if T is sur-

jective. Here, BX is the closed unit ball of X . While, the maximum modulus of T is defined by

M(T ) := max{m(T ),q(T )}, and is positive precisely when either T is bounded below or T is surjec-

tive. Note that m(T ∗) = q(T ) and q(T ∗) = m(T ) for all T ∈B(X ), and that

M(T ) = m(T ) = q(T ) = ‖T −1‖−1
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whenever T is invertible.

In this paper, we let c(.) stand for either the minimum modulus m(.), or the surjectivity modulus

q(.), or the maximum modulus M(.). We establish a similar result to Theorem 3.1.1 of characterizing

maps from B(X ) onto B(Y ) preserving any of the surjectivity, the injectivity, and the boundedness

from below of the difference and sum of operators. We describe the adjacency of operators in term

of any of the previous mentioned spectral quantities and use such a description to show that if

a map ϕ from B(X ) onto B(Y ) satisfies (3.1.4), then ϕ satisfies (3.1.1) and thus Theorem 3.1.1

ensures that such a mapϕ takes either (3.1.2) or (3.1.3). Then we describe mapsϕ from B(X ) onto

B(Y ) satisfying

c(ϕ(S)−ϕ(T )) = c(S −T ) (3.1.4)

for all S, T ∈ B(X ). We show that such a map ϕ is an isometry translated by an operator in B(Y ).

We also characterize maps ϕ from B(X ) onto B(Y ) satisfying

c(ϕ(S)+ϕ(T )) = c(S +T ) (3.1.5)

for all S, T ∈B(X ). Furthermore, we obtain analog results for the finite dimensional case on maps

preserving the minimum modulus of the difference of matrices. Our arguments are influenced by

ideas from several papers [13, 15, 43, 48] and the approaches given therein, but the proof of our

main results requires new ingredients such as the complete characterization of maps preserving

the surjectivity and boundedness from below of the difference and sum of operators.

3.2 Preliminaries

In this section, we provide some essential lemmas that will be used in the proof of our main results.

The first lemma is well known and its proof is quoted from [23] for the sake of completeness of

the reader. Recall that the spectral radius of an operator T ∈ B(X ) is r(T ) = limn→∞ ‖T n‖ 1
n , and

coincides with the maximum modulus of σ(T ), the spectrum of T . Given x ∈ X and f ∈ X ∗, we

write 〈x, f 〉 instead of f (x) and x ⊗ f for the rank one operator defined by

(x ⊗ f )(y) := 〈y, f 〉x, (y ∈ X ).

Lemma 3.2.1. (Brešar-Šemrl [23].) Let A ∈ B(X ). Then A = 0 if and only if r(A +T ) = 0 for all

nilpotent operators T ∈B(X ) of rank at most one.

Proof. Assume that r(A + T ) = 0 for all nilpotent operators T ∈ B(X ) of rank at most one. We

suppose that A 6= 0 and obtain a contradiction.

Since A 6= 0, there is a vector x in X such that Ax 6= 0. Since r(A) = 0, the vectors Ax and x are

linearly independent. Hence, there is a linear functional f ∈ X ∗ such that 〈x, f 〉 = 〈Ax, f 〉 = 1. Now,

consider the rank one operator T := (−Ax + x)⊗ f . It satisfies T 2 = 0 and (T + A)x = x, and the

second identity implies r(A+T ) ≥ 1, which is a contradiction.
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In passing, we would like to mention that inspecting the proof of Theorem 3.1.1, it is easy to notice

that this result remains true when using sums in (3.1.1) instead of subtractions. But in such a case,

one should have R = 0 in either form (3.1.2) or (3.1.3). Indeed, assume that ϕ is a map from B(X )

onto B(Y ) satisfying

ϕ(S)+ϕ(T ) is invertible ⇐⇒ S +T is invertible, (3.2.6)

and let ϕ(T0) = 0 for some T0 ∈B(X ). Then for every T ∈B(X ), we have

T +T0 is invertible ⇐⇒ φ(T ) is invertible

⇐⇒ 2φ(T ) =φ(T )+φ(T ) is invertible

⇐⇒ T +T is invertible

⇐⇒ T is invertible.

Replacing T by T −λ1, one gets that σ(T +T0) = σ(T ) for all T ∈ B(X ). By Lemma 3.2.1, one has

T0 = 0 and ϕ(0) = 0.

This fact remains true if the invertibility in (3.2.6) is replaced by the surjectivity, boundedness from

below, ect. In particular, the following lemma holds and shows that a map from B(X ) onto B(Y )

vanishes at zero provided that it satisfies (3.1.5).

Lemma 3.2.2. If a map ϕ from B(X ) onto B(Y ) satisfies (3.1.5), then ϕ(0) = 0.

The following lemma is quoted from [76, Theorem 3.1 and Corollary 3.2] and is also needed for the

proof of our main results. The proofs presented therein are long and require several computations

and applications of Hahn-Banach Theorem. However, a simple and shorter proof was given in [13].

Lemma 3.2.3. (Skhiri [76].) For a bijective mapping A ∈ B(X ,Y ), the following statements are

equivalent.

(i) ‖AT A−1‖ = ‖T ‖ for all invertible operators T ∈B(X ).

(ii) ‖AT A−1‖ ≤ ‖T ‖ for all invertible operators T ∈B(X ).

(iii) ‖AT A−1‖ ≥ ‖T ‖ for all invertible operators T ∈B(X ).

(iv) A is an isometry multiplied by a scalar.

3.3 Nonlinear maps preserving the minimum modulus of matrices

Let Mn(C) be the algebra of all n ×n-complex matrices, and note that

m(T ) = q(T ) = M(T )

for all matrices T ∈ Mn(C). For an automorphism σ of C and a matrix T = [ti j ] ∈ Mn(C), let

Tσ := [σ(ti j )].
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Note that there are very large number of automorphisms of C, but the identity and conjugation

maps are the only continuous automorphisms; see [82]. On the other hand, it is well known that

for any isometry σ on C there is a unimodular scalar α and a scalar β ∈ C such that either σ(z) =
αz +β, (z ∈C), or σ(z) =αz +β, (z ∈C). In particular, if such an isometry σ fixes 0 and 1, then σ is

the identity or conjugation map.

In [43, Theorem 1.1], Havlicek and Šemrl obtained, in particular, a complete description of bijective

maps ϕ on the algebra Mn(F) of all n ×n−matrices over a field F with at least three elements that

satisfyϕ(a)−ϕ(b) is invertible if and only if a−b is invertible. For our purposes, we state the result

by Havlicek and Šemrl only for the complex case and we refer the readers to their paper for the

general result.

Theorem 3.3.1. (Havlicek -Šemrl [43].) A surjective map ϕ on Mn(C) satisfies

ϕ(S)−ϕ(T ) is invertible ⇐⇒ S −T is invertible

if and only if there are A, B , R ∈ Mn(C), with A and B invertible matrices, and an automorphism σ

of C such that either

ϕ(T ) = ATσB +R, (T ∈ Mn(C)),

or

ϕ(T ) = A (Tσ)tr B +R, (T ∈ Mn(C)).

Now, we are in a position to state and prove the main result of this section that gives a complete

description of surjective maps on Mn(C) preserving the minimum modulus of the difference of

matrices.

Theorem 3.3.2. A surjective map ϕ on Mn(C) satisfies

m
(
ϕ(S)−ϕ(T )

)= m(S −T ), (S,T ∈ Mn(C)), (3.3.7)

if and only if there are U , V , R ∈ Mn(C), with U and V unitary matrices, such that

ϕ(T ) =U T #V +R, (T ∈ Mn(C)),

where T # stands for T , or T tr , or T ∗, or T , the complex conjugation of T .

Proof. The "if part" is obvious. So, assume that (3.3.7) is satisfied and note that it follows from such

an identity thatϕ(S)−ϕ(T ) is invertible if and only if S−T is invertible. By Theorem 3.3.1, there are

A, B , R ∈ Mn(C) and an automorphism σ of C such that A and B are invertible matrices and either

ϕ(T ) = ATσB +R or ϕ(T ) = A (Tσ)tr B +R for all T ∈ Mn(C). For any z ∈C, we see that

|z| = m(z1) = m(ϕ(z1)−ϕ(0)) = |σ(z)|m(AB) = |σ(z)|.
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Hence, σ is the identity or conjugation map and thus

ϕ(T ) = AT #B +R, (T ∈ Mn(C)).

By (3.3.7), we have

1

‖B−1T #−1 A−1‖
= m(ϕ(T )−ϕ(0)) = m(T −0) = 1

‖T −1‖ = 1

‖T #−1‖
for all invertible matrices T ∈ Mn(C). Replacing T by T #−1

, we get that

‖B−1T A−1‖ = ‖T ‖

for all invertible matrices T ∈ Mn(C). By [13, Lemma 1.5], there are unitary matrices U , V ∈ Mn(C)

and scalars λ, µ ∈C such that λµ= 1, A =λU and B =µV . It follows that

ϕ(T ) = AT #B +R = (λU )T #(µV )+R =λµU T #V +R =U T #V +R

for all T ∈ Mn(C).

The following is a variant of Theorem 3.3.2, with a similar proof. But, the only thing that should

be observed is that Theorem 3.3.1 remains true when using sums in (3.1.1) instead of subtractions

and ϕ(0) = 0 if (3.3.8) is satisfied. This is, in fact, an immediate consequence of Lemma 3.2.2.

Theorem 3.3.3. A surjective map ϕ on Mn(C) satisfies

m
(
ϕ(S)+ϕ(T )

)= m(S +T ), (S,T ∈ Mn(C)), (3.3.8)

if and only if there are unitary matrices U , V ∈ Mn(C) such that

ϕ(T ) =U T #V , (T ∈ Mn(C)).

Here again, T # stands for T , or T tr , or T ∗, or T , the complex conjugation of T .

3.4 Nonlinear maps preserving different moduli of operators

In this section, we describe maps ϕ from B(X ) onto B(Y ) satisfying (3.1.4) and (3.1.5) and estab-

lish some ingredients needed for the proof of the main results of this section. The obtained results

generalize certain published results on linear or additive maps preserving the minimum and sur-

jectivity moduli of operators; see for instance [13–15, 67, 77] and the references therein.

Theorem 3.4.1. Assume that ϕ is a map from B(X ) onto B(Y ) satisfying (3.1.4). Then one of the

following situations hold:

(i) There are R ∈ B(Y ) and bijective isometries U : X → Y and V : Y → X , either both linear or

both conjugate linear, such that

ϕ(T ) =U T V +R, (T ∈B(X )). (3.4.9)
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(ii) There are bijective isometries U : X ∗ → Y and V : Y → X ∗, either both linear or both conjugate

linear, such that

ϕ(T ) =U T ∗V +R, (T ∈B(X )). (3.4.10)

Let us add a few comments to this theorem. First, the statement (i i ) can not occur if any of X or Y

is not reflexive. Second, letϕ be a map from B(X ) onto B(Y ). Then ifϕ takes (3.4.9) then (3.1.4) is

satisfied. However, if ϕ takes (3.4.10) then

m(ϕ(T )−ϕ(S)) = m(U (T −S)∗V ) = m((T −S)∗) = q(T −S)

for all S, T ∈B(X ). Similarly, one has

q(ϕ(T )−ϕ(S)) = q(U (T −S)∗V ) = q((T −S)∗) = m(T −S)

for all S, T ∈B(X ). From these, it is clear that

M(ϕ(T )−ϕ(S)) = M(T −S), (S, T ∈B(X )).

But, if there is a non-invertible surjective operator T0 in B(X ), then no map ϕ of the form (3.4.10)

preserves the minimum or surjectivity moduli of the difference of operators. Indeed, assume that

ϕ takes (3.4.10) and preserves the minimum modulus of the difference. Then, since q(T0) > 0 as T0

is surjective, we have

m(T0) = m(ϕ(T0)−ϕ(0)) = q(T0) > 0.

Hence, T0 is bounded from below as well, and thus it must be invertible. This is a contradiction.

We finally point out that there exists a complex infinite-dimensional Banach space X such that

every operator in B(X ) is a scalar plus compact; see [4]. Thus for such a Banach space X , every

surjective operator is invertible. On the other hand, if H is a complex infinite-dimensional Hilbert

space, then there are non invertible surjective operators in B(H ).

For our purposes, we establish a similar result to Havlicek and Šemrl [43] and Hou and Huang

[48] by replacing the invertibility by surjectivity and boundedness below. Such a result plays a

crucial role in the proof of the above theorem. Let ΩInj(X ), ΩSurj(X ), ΩLB(X ), ΩInj-or-Surj(X ) and

ΩLB-or-Surj(X ) be respectively the subsets of all injective operators, surjective operators, lower

bounded operators, injective or surjective operators, and lower bounded or surjective operators

of B(X ). Assume that Ω(X ) stands for any of these sets, and note that every operator T in Ω(X ) is

either injective or surjective and that T ∈Ω(X ) and

T ·Ω(X ) =Ω(X ) ·T =Ω(X )

for all invertible operators T ∈B(X ).

Theorem 3.4.2. If a surjective map ϕ from B(X ) into B(Y ) satisfies

ϕ(S)−ϕ(T ) ∈Ω(X ) ⇐⇒ S −T ∈Ω(X ), (3.4.11)

then ϕ is of the form (3.1.2) or (3.1.3).
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In the proof of this theorem, we show that ifϕ satisfies (3.4.11), thenϕ is a bijective map preserving

the invertibility of the difference of operators. But to establish this, we first characterize the adja-

cency of operators in term of operators in Ω(X ), as shown in the following lemma, whose proof

relies on some arguments similar to the ones given in [43, 46].

Lemma 3.4.3. For two different operators S and T in B(X ), the following statements are equivalent.

(i) S and T are adjacent; i.e., S −T has rank one.

(ii) There is an operator R ∈ B(X )\{S, T } such that either N − S ∈ Ω(X ) or N −T ∈ Ω(X ) for all

N ∈Ω(X )+ {R}.

Proof. Note that none of the above conditions are effected if S and T are replaced by S −F and

T −F for any F ∈B(X ). Thus, we may and shall prove this theorem when S = 0.

We first establish the implication (i i ) ⇒ (i ). Suppose that T has at least rank two and let us prove

that for every R ∈B(X ) different from 0 and T , there is N ∈B(X ) such that N −R ∈Ω(X ) and both

N and N −T are not in Ω(X ). So, let R ∈ B(X ) be an operator different from 0 and T and assume

that Tz −Rz and Rx are linearly dependent for all x, z ∈ X . It follows, since R 6= 0, that both T −R

and R are rank one operators with the same image. Thus, T has at most rank one which contradicts

the fact that T has at least rank two. Hence, there are nonzero vectors x1, x2 ∈ X such that T x2−Rx2

and Rx1 are linearly independent. If x1 and x2 are linearly dependent, then choose u ∈ X linearly

independent of x1. Thus, x2 +λu and x1 are linearly independent for all nonzero λ ∈C and

T (x2 +λu)−R(x2 +λu) = T x2 −Rx2 +λ(Tu −Ru)

and Rx1 are linearly independent for small enough λ. Thus, we may and shall assume that there

are linearly independent vectors x1, x2 ∈ X such that T x2 −Rx2 and Rx1 are linearly independent.

Choose a scalar λ ∈C such that λ1−T and λ1−R are both invertible, and set

x3 := (λ1−R)−1(T x2 −Rx2)

and

x4 := (λ1−R)−1(−Rx1).

Put X0 =∨
{x1, x2, x3, x4}, and let us discuss several cases.

Case 1. Assume that dim(X0) = 4, and let f1, f2, f3, f4 be linear functionals on X such that 〈x j , fi 〉 =
δi j for all 1 ≤ i , j ≤ 4, where δi j is the Kronecker symbol. Set X1 =⋂

1≤i≤4 ker( fi ) so that X = X0⊕X1,

and let

N = λ1−λx1 ⊗ f1 + (T x2 −λx2)⊗ f2

+ (λx2 −λx3 −Rx2 +Rx3)⊗ f3

+ (λx1 −λx4 −Rx1 +Rx4)⊗ f4,
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and note that, since N x1 = 0, we see that N is not injective and 0 lies in σ(N ). As σ(N ) is finite and

∂σ(N ) ⊂σsu(N ) ⊂σ(N ),

we see thatσ(N ) =σsu(N ). Here,σsu(N ) is the subjectivity spectrum of N and ∂σ(N ) is the bound-

ary of σ(N ). It follows that the operator N is not surjective as well and thus N 6∈Ω(X ).

We also note that (N −T )X1 = (λ1−T )X1 since N is nothing but λ1 when restricted to X1. As λ1−T

is invertible, we have dim((λ1−T )X0) = 4 and

X = (λ1−T )X0 ⊕ (λ1−T )X1 = (λ1−T )X0 ⊕ (N −T )X1.

Thus N−T can be surjective only if (N−T )X0 = (λ1−T )X0. But this does not hold since (N−T )x2 =
0 and thus

dim((N −T )X0) = dim(
∨

{(N −T )x1, (N −T )x3, (N −T )x4}) ≤ 3.

It follows that N −T is not surjective and is not injective. Thus, N −T 6∈Ω(X ).

Just as before, since λ1−R is invertible and (N −R)X1 = (λ1−R)X1, we note that N −R is invertible

if and only if (N −R)X0 = (λ1−R)X0. This always holds since

(N −R)x1 =−Rx1 = (λ1−R)x4,

(N −R)x2 = T x2 −Rx2 = (λ1−R)x3,

(N −R)x3 = (λ1−R)x2,

(N −R)x4 = (λ1−R)x1,

and thus N −R is invertible. It follows that N −R ∈Ω(X ).

Case 2. Assume that dim(X0) = 3, and x4 ∈ X0 =∨
{x1, x2, x3} so that

x4 =α1x1 +α2x2 +α3x3

for some scalars αi , 1 ≤ i ≤ 3. Let f1, f2, f3 be linear functionals on X such that 〈x j , fi 〉 = δi j for all

1 ≤ i , j ≤ 3, and note that, since x3 and x4 are linearly independent, eitherα1 6= 0 orα2 6= 0. Assume

that α1 6= 0, and let

N =λ1−λx1 ⊗ f1 + (T x2 −λx2)⊗ f2 + (λx2 −λx3 −Rx2 +Rx3)⊗ f3.

Just as in the previous case, one can show that both N and N−T are neither injective nor surjective

and thus both N and N −T are not inΩ(X ).

To show that N −R ∈Ω(X ), we only need to establish that (N −R)X0 = (λ1−R)X0. Indeed, we have

(N −R)x2 = (λ1−R)x3, (N −R)x3 = (λ1−R)x2 and

(N −R)(x1 −α3x2 −α2x3) = −Rx1 −α3(λ1−R)x3 −α2(λ1−R)x2

= (λ1−R)(x4 −α3x3 −α2x2)

= α1(λ1−R)x1.
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From this, one infers that (N −R)X0 = (λ1−R)X0 and thus (N −R) ∈Ω(X ).

Now, assume that α1 = 0, and set

N = λ1−λx1 ⊗ f1 + (T x2 −λx2)⊗ f2 + (λx1 −λx3 −Rx1 +Rx3)⊗ f3.

Just as in the previously, one can show that both N and N −T are not in Ω(X ), and (N −R)x2 =
(λ1−R)x3, (N −R)x3 = (λ1−R)x1 and

(N −R)(x2 −α3x1) = (λ1−R)x3 −α3(λ1−R)x4

= (λ1−R)(x4 −α3x3)

= α2(λ1−R)x2.

From this, one infers that (N −R)X0 = (λ1−R)X0 and N −R ∈Ω(X ).

Case 3. Assume that dim(X0) = 3, and x3 ∈ X0 =∨
{x1, x2, x4}. This case is dealt with similar reason-

ing as in the previous case.

Case 4. Assume that dim(X0) = 2, and x3, x4 ∈ X0 =∨
{x1, x2} so that

x3 =α1x1 +β1x2,

x4 =α2x1 +β2x2,

for some scalars αi and βi , i = 1, 2. Let f1 and f2 be linear functionals on X such that 〈x j , fi 〉 = δi j

for all i , j = 1, 2, and set

N = λ1−λx1 ⊗ f1 + (T x2 −λx2)⊗ f2.

Just as previously, one can show that both N and N −T are neither injective nor surjective and thus

both N and N −T are not inΩ(X ).

To finish, note that

(N −R)x2 = T x2 −Rx2 = (λ1−R)x3 =α1(λx1 −Rx1)+β1(λx2 −Rx2),

and

(N −R)x1 =−Rx1 = (λ1−R)x4 =α2(λx1 −Rx1)+β2(λx2 −Rx2).

It follows that (N −R)X0 = (λ1−R)X0 and N −R ∈Ω(X ) in this case too.

Conversely, let us establish the implication (i ) ⇒ (i i ). Assume that T := x⊗ f is a rank one operator,

where x ∈ X and f ∈ X ∗. Let R = 2T and let N be an operator in B(X ) such that N −R = N −2T ∈
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Ω(X ), and let us show that N ∈Ω(X ) or N −T ∈Ω(X ). We shall discuss several cases.

Case 1. Assume thatΩ(X ) coincides withΩLB(X ), and let us first show that there is u ∈ X such that

(N−2T )u = x. If N 6∈ΩLB(X ), then there exists a unit vector sequence {xn}n such that ‖N xn‖→ 0. As

{〈xn , f 〉}n is a bounded sequence of complex numbers, we may assume, without loss of generality,

that 〈xn , f 〉→ a ∈C. If a = 0, then

‖(N −R)xn‖ = ‖(N −2T )xn‖ = ‖N xn −2〈xn , f 〉x‖→ 0.

This contradicts the fact that N −R = N −2T is bounded below and shows that a is different from

zero. As

‖(N −2T )xn +2ax‖ ≤ ‖(N −2T )xn +2T xn‖+‖2T xn −2ax‖
= ‖N xn‖+‖2T xn −2ax‖→ 0

and the range of N −2T is closed, we see that x lies in the range of N −2T and thus there is u such

that (N −2T )u = x; as claimed. It follows that

(N −2T −λT ) = (N −2T )(1−λu ⊗ f ) (3.4.12)

for all λ ∈C. Note that, since N −2T ∈ΩLB(X ), we have

N −2T −λT ∈ΩLB(X ) ⇐⇒ 1−λu ⊗ f is invertible

for all λ ∈ C. Since N = N − 2T − (−2)T 6∈ ΩLB(X ), we see that 1−λu ⊗ f is not invertible when

λ = −2 and thus σ(u ⊗ f ) = {
0,−1

2

}
since the spectrum of any rank one operator has at most one

nonzero point. It follows that N −T = N −2T − (−1)T ∈ΩLB(X ), and thus the implication (i ) ⇒ (i i )

is established forΩLB(X ).

Case 2. If Ω(X ) coincides with ΩSurj(X ), then obviously there is u ∈ X such that (N −2T )u = x and

thus (3.4.12) is satisfied. The rest of the proof of this case runs as in the proof of the previous case.

Case 3. If Ω(X ) coincides with ΩLB-or-Surj(X ), then the conclusion is a consequence of case 1 and

case 2 together.

Case 4. IfΩ(X ) coincides withΩInj(X ) and then N−R = N−2T is injective. Assume that N and N−T

are not injective. Thus, Nu = 0 and (N−T )v = 0 and N v = 〈v, f 〉x. If u and v are linearly dependent

then Nu = N v = (N −T )v = 0 implies that T v = 0. Hence, (N −2T )v = 0 and this contradicts the

fact that N −2T is injective. Thus, u and v are linearly independent. On the other hand, we have

(N −2T )u =−2〈u, f 〉x and (N −2T )v = (N −T )v −T v =−〈v, f 〉x,
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and

(N −2T )
(〈v, f 〉u −2〈u, f 〉v

)= 0.

The injectivity of N −2T implies that 〈v, f 〉u −2〈u, f 〉v = 0 and 〈u, f 〉 = 〈v, f 〉 = 0. But, this is im-

possible.

Case 5. If Ω(X ) coincides with ΩInj-or-Surj(X ), then the conclusion is a consequence of case 2 and

case 4.

The following lemma generalizes the corresponding one from [43, Lemma 3.2]. Its proof is on the

straightforward side and uses exactly the same arguments given in [43]. We omit the details.

Lemma 3.4.4. (Havlicek-Šemrl [43].) Let S, T be two operators in B(X ) such that for every invertible

operator N in B(X ), we have

S −N ∈Ω(X ) ⇐⇒ T −N ∈Ω(X ).

Then S = T .

The following lemma is quoted from [70], and describes nonlinear maps that map finite rank op-

erators onto themselves and preserve the rank oneness of the difference of operators. Recall that a

map A from X into Y is called semilinear if it is additive and there is an automorphism σ of C such

that A(λx) = σ(λ)Ax for all x ∈ X and λ ∈ C. Such a map is sometimes called σ-semilinear when

the automorphism σ is specified.

Lemma 3.4.5. (Petek-Šemrl [70].) Assume that X and Y are Banach spaces of dimensions at least 2,

and let ϕ be a bijective map from F (X ) into F (Y ) such that whenever S, T are operators in F (X )

then one has

S −T has rank one ⇐⇒ ϕ(S)−ϕ(T ) has rank one.

Then one of the following situations hold:

(i) There are an automorphism σ of C, R ∈B(Y ), and bijective σ-semilinear maps A : X → Y and

B : X ∗ → Y ∗ such that T 7→ϕ(T )−R is an additive map defined by

ϕ(x ⊗ f )−R = Ax ⊗B f , (x ∈ X , f ∈ X ∗).

(ii) There are an automorphism σ of C, R ∈ B(Y ), and bijective σ-semilinear maps A : X → Y ∗

and B : X ∗ → Y such that T 7→ϕ(T )−R is an additive map defined by

ϕ(x ⊗ f )−R = B f ⊗ Ax, (x ∈ X , f ∈ X ∗).

Now, we are ready to prove Theorem 3.4.2 whose proof breaks down into four steps
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Proof of Theorem 3.4.2. Assume that ϕ satisfies (3.4.11) and note that ϕ−ϕ(0) satisfies (3.4.11) as

well. Thus, after replacing ϕ by ϕ−ϕ(0), we may and shall assume that ϕ(0) = 0.

Step 1. ϕ is bijective.

Assume that ϕ(S1) =ϕ(S2) for some operators S1 and S2 in B(X ), and let us show that S1 = S2. For

every operator N ∈B(X ), we have

S1 −N ∈Ω(X ) ⇐⇒ ϕ(S1)−ϕ(N ) ∈Ω(X )

⇐⇒ ϕ(S2)−ϕ(N ) ∈Ω(X )

⇐⇒ S2 −N ∈Ω(X ).

By Lemma 3.4.4, we see that S1 = S2 and thusϕ is injective. It is in fact bijective since it is supposed

to be surjective.

Step 2. Either there exist bijective semilinear maps A : X → Y and B : X ∗ → Y ∗ with the same

associated automorphism of C such that

ϕ(x ⊗ f ) = (Ax)⊗ (B f ), (x ∈ X , f ∈ X ∗), (3.4.13)

or there exist bijective semilinear maps A : X → Y ∗ and B : X ∗ → Y with the same associated

automorphism of C such that

ϕ(x ⊗ f ) = (B f )⊗ (Ax), (x ∈ X , f ∈ X ∗). (3.4.14)

By Lemma 3.4.3, ϕ preserves adjacency in both directions. Every rank one operator is adjacent to

zero, every rank two operator is adjacent to a rank one operator, etc. Consequently, ϕ maps the

ideal of all finite rank operators F (X ) onto itself. Now, Lemma 3.4.5 ensures that ϕ takes one of

the above forms.

In the rest of the proof, we may and shall assume that ϕ takes the first form (3.4.13) since the case

when ϕ has the second form (3.4.14) is dealt in a similar way.

Step 3. ϕ preserves the invertibility in both directions.

Let us first show that ϕ(1) is invertible and let us discuss several cases.
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Case 1. Assume thatΩ(X ) =ΩInj(X ), and note that ϕ(1) is injective. Let us show that ϕ(1) is surjec-

tive. For every nonzero vector x ∈ X , let f ∈ X ∗ such that 〈x, f 〉 = 1, and note that 1− x ⊗ f is not

injective and so is ϕ(1)− (Ax)⊗ (B f ). Thus
(
ϕ(1)− (Ax)⊗ (B f )

)
y = 0 for some nonzero y ∈ X . This

shows that ϕ(1)y = 〈y,B f 〉Ax. As ϕ(1) is injective, we see that 〈y,B f 〉 6= 0 and Ax lies in the range

of ϕ(1). Since A is semilinear and bijective, we infer that Ax lies in the range of ϕ(1) for all x ∈ X

and ϕ(1) is surjective; as desired.

Case 2. Assume thatΩ(X ) =ΩSurj(X ), and note thatϕ(1) is surjective and thusϕ(1)∗ is bounded be-

low. Let f ∈ X ∗ be a nonzero arbitrary linear functional, and let x ∈ X such that 〈x, f 〉 = 1. We have

1−x ⊗ f is not surjective, and so is ϕ(1)− (Ax)⊗ (B f ) and thus ϕ(1)∗− (B f )⊗ (Ax) is not bounded

below. Since ϕ(1)∗ has a closed range, we see that ϕ(1)∗− (B f )⊗ (Ax) has a closed range too and

thusϕ(1)∗−(B f )⊗(Ax) is not injective. Hence, there is g ∈ Y ∗ such that
(
ϕ(1)∗− (B f )⊗ (Ax)

)
g = 0

and thus ϕ(1)∗g = 〈g , Ax〉B f . As ϕ(1)∗ is injective, we see that 〈g , Ax〉 6= 0 and B f lies in the range

ofϕ(1)∗. Since B is semilinear and bijective, we infer that B f lies in the range ofϕ(1)∗ for all f ∈ X ∗

andϕ(1)∗ is surjective. It follows thatϕ(1) is bounded below but since it is surjective, we in fact see

that ϕ(1) is invertible.

Case 3. Assume that Ω(X ) = ΩInj-or-Surj(X ), and note that ϕ(1) is either injective or surjective. If

ϕ(1) is injective, let x ∈ X be a nonzero vector in X and f ∈ X ∗ such that 〈x, f 〉 = 1. Note that

1 − x ⊗ f is not injective and is not surjective, and thus so is ϕ(1)− (Ax)⊗ (B f ). If follows that(
ϕ(1)− (Ax)⊗ (B f )

)
y = 0 for some nonzero y ∈ X , and thus just as Case 1 one sees that ϕ(1) is

invertible.

If ϕ(1) is surjective, then ϕ(1)∗ is bounded below. Let f ∈ X ∗ be a nonzero arbitrary linear func-

tional, and let x ∈ X such that 〈x, f 〉 = 1. Clearly, 1− x ⊗ f is not injective and is not surjective,

and so is ϕ(1)− (Ax)⊗ (B f ). Hence, there is g ∈ Y ∗ such that
(
ϕ(1)∗− (B f )⊗ (Ax)

)
g = 0 and thus

ϕ(1)∗g = 〈g , Ax〉B f . As ϕ(1)∗ is injective, we see that 〈g , Ax〉 6= 0 and B f lies in the range of ϕ(1)∗.

Since B is semilinear and bijective, we infer that B f lies in the range of ϕ(1)∗ for all f ∈ X ∗ and

ϕ(1)∗ is surjective. It follows thatϕ(1) is bounded below but since it is surjective, we in fact see that

ϕ(1) is invertible.

Case 4. Assume that Ω(X ) =ΩLB(X ), and note that ϕ(1) is bounded below. Let x ∈ X be a nonzero

vector in X and f ∈ X ∗ such that 〈x, f 〉 = 1. Note that 1−x⊗ f is not bounded below, and thus so is

ϕ(1)− (Ax)⊗ (B f ). It follows that
(
ϕ(1)− (Ax)⊗ (B f )

)
y = 0 for some nonzero y ∈ X , and thus just

as Case 1 one sees that ϕ(1) is invertible.

Case 5. Assume that Ω(X ) =ΩLB-or-Surj(X ), and note that ϕ(1) is either bounded below or surjec-

tive. If ϕ(1) is surjective, then ϕ(1)∗ is bounded below. Let f ∈ X ∗ be a nonzero arbitrary linear
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functional, and let x ∈ X such that 〈x, f 〉 = 1. Clearly, 1− x ⊗ f is not bounded below and is not

surjective, and so is ϕ(1)− (Ax)⊗ (B f ). Hence, there is g ∈ Y ∗ such that
(
ϕ(1)∗− (B f )⊗ (Ax)

)
g = 0

and thus ϕ(1)∗g = 〈g , Ax〉B f . As ϕ(1)∗ is injective, we see that 〈g , Ax〉 6= 0 and B f lies in the range

ofϕ(1)∗. Since B is semilinear and bijective, we infer that B f lies in the range ofϕ(1)∗ for all f ∈ X ∗

andϕ(1)∗ is surjective. It follows thatϕ(1) is bounded below but since it is surjective, we in fact see

that ϕ(1) is invertible.

Now, we show that ϕ(T0) is invertible for all invertible operator T0 ∈B(X ). Consider

φ(T ) :=ϕ(T0T ) (T ∈B(X )),

and note that φ is a bijective map on B(X ) satisfying (3.4.11). By what has shown above, we see

that φ(1) = ϕ(T0) is invertible. Since ϕ−1 satisfies (3.4.11) as well, we deduce from what has been

discussed that ϕ preserves the invertibility in both directions.

Step 4. ϕ satisfies (3.1.1), and takes the desired forms.

Fix an arbitrary operator T ∈B(X ) and define

ψ(S) :=ϕ(S +T )−ϕ(T )

for all S ∈ B(X ). Clearly, ψ is a surjective map satisfying (3.4.11) and thus, by the preceding step,

ψ preserves the invertibility in both directions. In particular, for every S ∈ B(X ), we have S −T is

invertible if and only ifψ(S−T ) =ϕ(S)−ϕ(T ) is invertible. So,ϕ satisfies (3.1.1) and Theorem 3.1.1

shows that ϕ takes the desired forms.

All the ingredients are collected and we therefore are in a position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Assume that ϕ is a map from B(X ) onto B(Y ) satisfying

c(ϕ(S)−ϕ(T )) = c(S −T ) (3.4.15)

for all S, T ∈ B(X ), and note that ϕ is a bijective map satisfying (3.4.11). By Theorem 3.4.2, there

exists an operator R ∈ B(Y ) and either there are bijective continuous mappings A : X → Y and

B : Y → X both linear or both conjugate linear such that

ϕ(T ) = AT B +R, T ∈B(X ), (3.4.16)

or there are bijective continuous mappings A : X ∗ → Y and B : Y → X ∗ both linear or both conju-

gate linear such that

ϕ(T ) = AT ∗B +R, T ∈B(X ). (3.4.17)
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Assume without loss of generality that the first possibility holds, and note that

1

‖T ‖ = c
(
T −1)= c

(
ϕ(T −1)−ϕ(0)

)= c
(

AT −1B
)= 1

‖B−1T A−1‖
for all invertible operators T ∈B(X ). By Lemma 3.2.3, there are isometries U : X → Y and V : Y →
X both linear or both conjugate linear, and scalars λ and µ such that A = λU and B = µV and

λµ= 1. Thus

ϕ(T ) = AT B +R = (λU )T (µV )+R =U T V +R

for all T ∈B(X ); as desired.

3.5 Concluding remarks

With no extra effort, the proof of Theorem 3.4.2 establishes the following result.

Theorem 3.5.1. If a surjective map ϕ from B(X ) into B(Y ) satisfies

ϕ(S)+ϕ(T ) ∈Ω(X ) ⇐⇒ S +T ∈Ω(X ), (3.5.18)

then ϕ takes (3.1.2) or (3.1.3) with R = 0.

This theorem allows one to describe surjective maps preserving the minimum, surjectivity and

maximum moduli of the sum of operators and obtain the following variant of Theorem 3.4.1.

Theorem 3.5.2. Assume that ϕ is a map from B(X ) onto B(Y ) satisfying

c(ϕ(S)+ϕ(T )) = c(S +T )

for all S, T ∈B(X ). Then ϕ takes either (3.4.9) or (3.4.10) with R = 0.

With the obtained results and techniques of this paper, one could obtain the complete descrip-

tion of maps from B(X ) onto B(Y ) preserving different spectral sets and quantities (such as the

ascent, descent, etc) of the difference and sum of operators. We finally let ΩLinv(X ), ΩRinv(X ) and

ΩLRinv(X ) be the sets of all left invertible operators, right invertible operators and left or right in-

vertible operators, respectively, of B(X ), and point out that similar results to Theorem 3.4.2 and

Theorem 3.5.1 can be obtained for these sets.
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Chapter 4

Nonlinear maps preserving the reduced

minimum modulus of operators

Résumé

Soit X et Y des espaces de Banach complexes de dimension infine, et soit B(X ) (resp. B(Y ))

l’algèbre de tous les opérateurs linéaires et bornés sur X (resp. sur Y ). Nous décrivons des

applications bicontinues et bijectives ϕ de B(X ) sur B(Y ), qui satisfont

γ(ϕ(S ±ϕ(T )) = γ(S ±T )

pour tous S, T ∈ B(X ), où γ(T ) est la conorme d’un opérator T . Un résultat analogue pour le

cas de dimension finie est obtenu.

Abstract

Let X and Y be infinite-dimensional complex Banach spaces, and let B(X ) (resp. B(Y )) de-

note the algebra of all bounded linear operators on X (resp. on Y ). We describe bijective bi-

continuous maps ϕ from B(X ) to B(Y ) satisfying

γ(ϕ(S ±ϕ(T )) = γ(S ±T )

for all S, T ∈ B(X ), where γ(T ) is the reduced minimum modulus of an operator T . An ana-

logue result for the finite-dimensional case is obtained.

4.1 Introduction

Numerous studies have been done on the subject of nonlinear preserver problems. These prob-

lems, in the most general setting, demand the characterization of maps between algebras that leave

a certain property, a particular relation, or even a subset invariant without assuming in advance

algebraic conditions such as linearity, additivity or multiplicity; see for instance [27, 31, 35, 40–

43, 45, 47–50, 53, 58, 60, 61, 68, 69, 71, 72, 80, 84]. The characterization of surjective maps on the
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algebra Mn(C) of all complex n×n-matrices preserving the spectral radius of the difference of ma-

trices was given in [11] by Bhatia, Šemrl and Sourour. In [69], Molnár studied maps preserving the

spectrum of matrix or Hilbert space operator products. His results have been extended in many

directions for uniform algebras and semisimple commutative Banach algebras, and a number of

results is obtained on maps preserving several spectral and local spectral quantities of operator

or matrix product, or Jordan product, or Jordan triple product, or difference; see for instance [16–

19, 27–30, 35, 40–43, 47, 49, 50, 53, 58, 60, 61, 68, 71, 72, 80] and the references therein.

Recently, Bourhim, Mashreghi and Stepanyan described in [20] nonlinear maps preserving the

minimum and surjectivity moduli of the difference of operators and matrices, and thus extending

the main results of several papers to the nonlinear setting; see for instance [13] and the references

therein. However, the corresponding problem of characterizing nonlinear maps preserving the re-

duced minimum modulus was naturally left therein [20]. It is the aim of this note to describe such

maps and show that a bijective bicontinuous map on the algebra of all bounded linear operators

on a complex Banach space preserves the reduced minimum modulus of the differences of oper-

ators if and only if it is an isometry translated by an operator. The proof of such a promised result

uses some arguments that are influenced by ideas from several papers including [13, 20].

4.2 Preliminaries

Let Mn(C) denote, as usual, the algebra of all n × n complex matrices, and let T tr denote the

transpose of any matrix T ∈ Mn(C). Let B(X ) (resp. B(Y )) be the algebra of all bounded lin-

ear operators on a complex Banach space X (resp. Y ). The dual space of X is denoted by X ∗,

and the Banach space adjoint of an operator T ∈ B(X ) is denoted by T ∗. The minimum modu-

lus of an operator T ∈ B(X ) is m(T ) := inf{‖T x‖ : x ∈ X , ‖x‖ = 1}, and is positive precisely when

T is bounded below; i.e., T is injective and has a closed range. The surjectivity modulus of T is

q(T ) := sup{ε≥ 0: εBX ⊆ T (BX ) }, and is positive if and only if T is surjective. Here, BX is the closed

unit ball of X . While, the maximum modulus of T is defined by M(T ) := max{m(T ),q(T )}, and is

positive precisely when either T is bounded below or T is surjective. Note that m(T ∗) = q(T ) and

q(T ∗) = m(T ) for all T ∈ B(X ), and consequently M(T ∗) = M(T ) for all T ∈ B(X ). Finally, recall

that the reduced minimum modulus of T is defined by

γ(T ) :=
inf{‖T x‖ : dist(x,K er T ) ≥ 1} if T 6= 0,

∞ if T = 0

and is positive if and only if the range of T is closed. It is easy to see that γ(T ∗) = γ(T ) and γ(T ) ≥
M(T ). Moreover, we note that γ(T ) = M(T ) if M(T ) > 0, and

γ(T ) = M(T ) = m(T ) = q(T ) = ‖T −1‖−1

whenever T is invertible.
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In [20], the description of surjective maps ϕ from B(X ) to B(Y ) satisfying

c(ϕ(S)−ϕ(T )) = c(S −T ), (S, T ∈B(X )),

is obtained. Here, c(·) stands either for the minimum modulus, or the surjectivity modulus, or

the maximum modulus. But naturally one may ask if similar description can be established for

the reduced minimum modulus instead of the spectral quantity c(·). So, we have the following

problem.

Problem 4.2.1. Which surjective maps ϕ : B(X ) →B(Y ) satisfy

γ(ϕ(S)−ϕ(T )) = γ(S −T ) (4.2.1)

for all S, T ∈B(X )?

Note that any map ϕ on B(X ) satisfying (4.2.1) is injective. Indeed, if ϕ(S) =ϕ(T ), then

∞= γ(0) = γ(ϕ(S)−ϕ(T )) = γ(S −T ),

and thus S −T = 0. Hence, ϕ is injective; as claimed. In view of this observation, we shall assume

that our map ϕ is always bijective.

The aim of this note is to answer this problem but under the extra condition thatϕ is bicontinuous.

To do so, we shall assume in the sequel that X and Y are infinite dimensional complex Banach

spaces, and state two results needed for the proof of our main result.

4.3 Main result and its proof

We manage to describe the operators ϕ that satisfy the condition (4.2.1) and are bicontinuous. We

tried to avoid the last condition, but we have not found the way still. The following theorem is the

main result of this note.

Theorem 4.3.1. A bicontinuous bijective map ϕ from B(X ) into B(Y ) satisfies (4.2.1) if and only if

one of the following situations hold:

(i) There are R ∈ B(Y ) and bijective isometries U : X → Y and V : Y → X , either both linear or

both conjugate linear, such that

ϕ(T ) =U T V +R, (T ∈B(X )). (4.3.2)

(ii) There are R ∈ B(Y ) and bijective isometries U : X ∗ → Y and V : Y → X ∗, either both linear or

both conjugate linear, such that

ϕ(T ) =U T ∗V +R, (T ∈B(X )). (4.3.3)

The second statement can not occur if any of X or Y is not reflexive.
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Proof. Note that, since the "if" part obviously holds, we only need to establish the "only if" part.

Assume that ϕ is a bicontinuous bijective map from B(X ) into B(Y ) satisfying (4.2.1). Note that

we may and shall assume that ϕ(0) = 0 since ϕ−ϕ(0) satisfies (4.2.1) as well.

We first show that

M(ϕ(T )) = 0 ⇐⇒ M(T ) = 0, (T ∈B(X )).

Indeed, assume that T0 ∈ B(X ) is an operator for which M(T0) > 0 and let us show that M(R0) > 0

where R0 := ϕ(T0). Since M(T0) > 0, then γ(T0) = M(T0) > 0 and consequently γ(R0) = γ(ϕ(T0)−
ϕ(0)) = γ(T0−0) > 0, so the operator R0 has a closed range. To see that M(R0) > 0 it suffices to show

that R0 is surjective or ker(R0) is trivial. Assume by the way of contradiction that R0 is not surjective

and ker(R0) is not trivial, and pick up two unit vectors x ∉ range(R0) and y ∈ ker(R0). Let f ∈ X ∗

be a linear functional such that 〈y, f 〉 = 1, and r > 0 be a positive number. Since x ∉ range(R0), we

have ker(R0 − r x ⊗ f ) = ker(R0)
⋂

ker( f ) and

r = ||(R0 − r x ⊗ f )y ||
≥ γ(R0 − r x ⊗ f )dist(y,ker(R0 − r x ⊗ f ))

≥ δγ(R0 − r x ⊗ f ),

where δ := dist(y,ker( f )) which is of course positive. As ϕ is bijective, we can write

r ≥ δγ(R0 − r x ⊗ f ) = δγ(ϕ(T0)−ϕϕ−1(r x ⊗ f ) = δγ(T0 −ϕ−1(r x ⊗ f )).

Asϕ is supposed to be bicontinuous at 0, which means particularly that it’s inverse is continuous at

0, so Sr =ϕ−1(r x⊗ f ) → 0, when r → 0. As the set of all operators with positive maximum modulus

is open, it follows that M(T0 −Sr ) > 0 and thus

r ≥ δγ(T0 −Sr ) = δM(T0 −Sr )

for all sufficiently small numbers r . As the maximum modulus is a continuous function, the right

side of the inequality tends to δM(T0) > 0 as r goes to 0, and thus one gets a contradiction. We

therefore have M(R0) = M(ϕ(T0)) > 0.

Noticing thatϕ−1 satisfies the same conditions asϕ, we conclude thatϕ preserves the zeros of M(.)

in the other direction also.

Second, let us show that M(S −T ) = 0 if and only if M(ϕ(S)−ϕ(T )) = 0 for all S, T ∈ B(X ). Fix an

operator T ∈ B(X ), and define ψ(S) := ϕ(S +T )−ϕ(T ) for all S ∈ B(X ). It is easy to see that ψ is

a bicontinuous bijective map from B(X ) into B(Y ) satisfying (4.2.1) and for which ψ(0) = 0. By

what has shown above, we see that

M(ψ(S)) > 0 ⇐⇒ M(S) > 0

for all S ∈B(X ). Replacing S by S −T , we see that

M(ϕ(S)−ϕ(T )) = M(ψ(S −T )) > 0 ⇐⇒ M(S −T ) > 0
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for all S, T ∈B(X ).

Since γ(T ) = M(T ) for all T ∈B(X ) for which M(T ) > 0, one concludes from the last step and (4.2.1)

that

M(ϕ(S)−ϕ(T )) = M(S −T )

for all S, T ∈B(X ). Therefore, the desired conclusion immediately holds by applying [20, Theorem

4.1].

We also obtain an analogue result for the finite-dimensional case.

Theorem 4.3.2. A bicontinuous bijective map ϕ on Mn(C) satisfies (4.2.1) if and only if there are

U , V , R ∈ Mn(C), with U and V unitary matrices, such that

ϕ(T ) =U T #V +R, (T ∈ Mn(C)), (4.3.4)

where T # stands for T , or T tr , or T ∗, or T , the complex conjugation of T .

Proof. Assume that ϕ is a bicontinuous bijective map on Mn(C) satisfying (4.2.1). Just as for the

proof of the Theorem 4.3.1, one shows that

M(ϕ(S)−ϕ(T )) = M(S −T ), (S, T ∈ Mn(C)),

and consequently, using [20, Theorem 3.2], we obtain the result.

One may think about describing maps ϕ from B(X ) onto B(Y ) satisfying

γ(ϕ(S)+ϕ(T )) = γ(S +T ) (4.3.5)

for all S, T ∈B(X ). But for such a map ϕ, it is easy to see that ϕ(0) = 0 and (4.2.1) is automatically

satisfied. Indeed, take T = S = 0 and note that (4.3.5) implies that ∞= γ(0+0) = γ(2ϕ(0)) and thus

ϕ(0) = 0. On the other hand, fix an operator T ∈B(X ) and take S =−T , and note that (4.3.5) implies

that γ(ϕ(−T )+ϕ(T )) = γ(−T +T ) =∞, and thus ϕ(−T ) =−ϕ(T ). This shows that ϕ automatically

satisfies (4.2.1).

These observations tell us that Theorem 4.3.1 and Theorem 4.3.2 remain valid when (4.2.1) is re-

placed by (4.3.5), but in their conclusions R must be 0.
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Chapter 5

Nonlinear maps between Banach

algebras preserving the spectrum

Résumé

Soit A et B des algèbres de Banach complexes unitaires semisimples et soit ϕ1 et ϕ2 des ap-

plications surjectives de A sur B. Nous montrons que si le socle de A est un idéal essentiel de

A , et ϕ1 et ϕ2 satisfont

σ
(
ϕ1(a)ϕ2(b)

)=σ(ab)

pour tous a,b ∈A , alors ϕ1ϕ2(1) et ϕ1(1)ϕ2 coïncident et sont des isomorphismes de Jordan.

Nous montrons aussi qu’une application surjective ϕ de A sur B satisfait

σ
(
ϕ(a)ϕ(b)ϕ(a)

)=σ(aba)

pour tous a,b ∈A si et seulement si ϕ(1) est un élément inversible centrale de B pour lequel

ϕ(1)3 = 1 et ϕ(1)2ϕ est un isomorphisme de Jordan.

Abstract

Let A and B be unital semisimple complex Banach algebras, and let ϕ1 and ϕ2 be maps from

A onto B. We show that if the socle of A is an essential ideal of A , and ϕ1 and ϕ2 satisfy

σ
(
ϕ1(a)ϕ2(b)

)=σ(ab)

for all a,b ∈ A , then ϕ1ϕ2(1) and ϕ1(1)ϕ2 coincide and are Jordan isomorphisms. We also

show that a map ϕ from A onto B satisfies

σ
(
ϕ(a)ϕ(b)ϕ(a)

)=σ(aba)

for all a,b ∈ A if and only if ϕ(1) is a central invertible element of B for which ϕ(1)3 = 1 and

ϕ(1)2ϕ is a Jordan isomorphism.
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5.1 Introduction

Throughout this paper, let A and B be unital complex Banach algebras. For an element a in

A , let σ(a) denote the spectrum of a. It is a nonempty compact set and its maximum modulus

coincides with the spectral radius of a defined by r(a) = limn→∞ ‖an‖1/n . In [3, 24], the question

whether for given two elements a, b ∈ A the condition σ(ax) = σ(bx) for all x ∈ A entails a = b

was studied, and an affirmative answer has been obtained in [3, 24] for various special cases and

for some classes of algebras, including C∗−algebras. Among other results and problems, they also

considered the problem of describing maps ϕ from A onto B satisfying

σ
(
ϕ(a)ϕ(b)

)=σ(ab), (a,b ∈A ). (5.1.1)

This problem was initiated by Molnár [69] when A and B coincide with the algebra B(H ) of all

bounded linear operators on a complex Hilbert space H and his result has been extended in dif-

ferent directions for some special algebras; see [1, 27, 47, 59, 81] and the references therein. In [47],

Hou and Di described, in particular, maps preserving the numerical ranges of products of Hilbert

space operators. In [59], maps preserving the nilpotency of operator products are characterized.

In this paper, we solve the problem (5.1.1) in general scope. We show, in particular, that if the socle

of A is an essential ideal of A , then such a map ϕ is a Jordan isomorphism multiplied by a central

invertible element of B. We also describe maps ϕ from A onto B satisfying

σ
(
ϕ(a)ϕ(b)ϕ(a)

)=σ(aba), (a,b ∈A ) (5.1.2)

when the socle of A is an essential ideal of A .

5.2 Main results

Before stating the main results of this paper, we review some concepts needed in the sequel. If A

has a minimal left (or right) ideal, then its socle, denoted by Soc(A ), is the sum of all minimal left

(or right) ideals of A . If A has no minimal one-sided ideals, the socle is then defined to be trivial;

i.e., Soc(A ) = {0}. Note that Soc(A ) is an ideal of A consisting of all elements a ∈ A for which

σ(xa) is finite for all x ∈A , and that all its elements are algebraic. A nonzero element u ∈A is said

to have rank one if for every x ∈ A , the spectrum σ(ux) contains at most one nonzero scalar. The

set F1(A ) of all rank one elements of A is contained in Soc(A ) and in turn Soc(A ) is equal to the

set of all finite sums of rank one elements of A . An ideal P of A is essential if 0 is the only element

a of A for which a.P = 0. We refer the reader to [6, 9] for more details. It should be noted that a

semisimple Banach algebra is finite dimensional if and only if it coincides with its socle; see for

instance [6, Theorem 5.4.2]. Finally, recall that a linear map ϕ from A into B is said to be Jordan

homomorphism if ϕ(a2) =ϕ(a)2 for all a ∈A , and that a bijective Jordan homomorphism is called

a Jordan isomorphism.

47



The following result gives a complete description of maps between Banach algebras preserving the

spectrum of product of elements.

Theorem 5.2.1. Assume that A is semisimple and B has an essential socle. If mapsϕ1 andϕ2 from

A onto B satisfy

σ(ϕ1(a)ϕ2(b)) =σ(ab), (a,b ∈A ), (5.2.3)

then the maps ϕ1ϕ2(1) and ϕ1(1)ϕ2 coincide and are Jordan isomorphisms.

Clearly, every homomorphism and every anti-homomorphism is a Jordan homomorphism. Con-

versely, in [51], Jacobson and Rickart proved that a Jordan homomorphism from an arbitrary ring

into a domain is either a homomorphism or an antihomomorphism. The same conclusion holds

for Jordan homomorphisms onto prime rings, as shown by Herstein [44] and Smiley [78]. In fact,

the problem of whether Jordan homomorphisms can be expressed through homomorphisms and

antihomomorphisms was considered by several authors; see for instance [10, 22] and the refer-

ences therein.

The first corollary is an immediate consequence of Theorem 5.2.1 and Herstein’s theorem [44].

Corollary 5.2.2. If A is a primitive Banach algebra with nonzero socle, andϕ1 andϕ2 are surjective

maps from A into B satisfying (5.2.3), then the maps ϕ1ϕ2(1) and ϕ1(1)ϕ2 coincide, and ϕ1ϕ2(1)

is either an isomorphism or an anti-isomorphism.

Jacobson’s lemma [6, Lemma 3.1.2] asserts that for arbitrary a,b ∈ A , the two spectra σ(ab) and

σ(ba) can differ by only the point 0. With this, it is easy to see that σ(ab) = σ(ba) for all a,b ∈
A if and only if every left/right invertible element in A is invertible if and only if every anti-

isomorphism from A into B satisfy (5.1.1). This happens, in particular, when A and B coincide

with Mn(C), the algebra of all n ×n-matrices.

The second corollary is an immediate consequence of Theorem 5.2.1 whenϕ1 andϕ2 are the same.

Corollary 5.2.3. Assume that A is semisimple and B has an essential socle. If a mapϕ from A onto

B satisfies (5.1.1), then ϕ(1) is a central invertible element of B for which ϕ(1)2 = 1 and ϕ(1)ϕ is a

Jordan isomorphism.

The final result describes the form of all maps between Banach algebras preserving the spectrum

of triple product of elements.

Theorem 5.2.4. Assume that A is semisimple and B has an essential socle. A surjective map ϕ :

A → B satisfies (5.1.2) if and only if ϕ(1) is a central invertible element of B for which ϕ(1)3 = 1

and ϕ(1)2ϕ is a Jordan isomorphism.
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To prove the above results, our strategy is to use spectral and algebraic methods and show that the

hypotheses of Theorem 5.2.1 and Theorem 5.2.4 allow us to exploit the following result of Brešar,

Fošner and Šemrl [25] and deduce that the corresponding mappings are Jordan isomorphisms.

Theorem 5.2.5. [Brešar, Fošner and Šemrl [25]] If A and B are semisimple Banach algebras such

that Soc(A ) is essential, and ϕ : A →B is a bijective linear map preserving the invertibility, then ϕ

is a Jordan isomorphism.

We close this section by pointing out that if A or B is isometrically isomorphic toC, then the proof

of our main results is an easy exercise. Thus, throughout the rest of this paper, one may assume

that each of our algebras A and B has a dimension greater than 1.

5.3 Preliminaries and properties of maps preserving the peripheral

spectrum

In this section, we collect and establish some auxiliary results needed for the proofs of the main

results. Some of this could be of independent interest.

For any element a in A , let σπ(a) be the peripheral spectrum defined by

σπ(a) := {λ ∈σ(a) : |λ| = r(a)}.

It is a nonempty compact subset of σ(a). The following lemma is a variant of [21, Theorem 2.2],

and its proof uses rank one elements. It is inspired by [9], and uses some tools quoted from [9, 25]

where it is shown that there is a function τ on F1(A ) such that σ(u) = {0,τ(u)} for all u ∈ F1(A )

and that

τ(au +bu) = τ(au)+τ(bu) (5.3.4)

for all a, b ∈A and u ∈F1(A ).

Lemma 5.3.1. If A is semisimple, then, for every two elements a, b ∈ A , the following statements

are equivalent.

(i) σ(au) =σ(bu) for all u ∈F1(A ).

(ii) σπ(au) =σπ(bu) for all u ∈F1(A ).

(iii) τ(au) = τ(bu) for all u ∈F1(A ).

(iv) (a −b) ·Soc(A ) = {0}. In particular, a = b if Soc(A ) is essential.

Proof. We only need to establish the implication (3) ⇒ (4). Assume that τ(au) = τ(bu) for all u ∈
F1(A ). By (5.3.4), we have

τ
(
(a −b)u

)= 0 (5.3.5)
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for all u ∈ F1(A ). Now, assume that (a −b)u0 6= 0 for some u0 ∈ F1(A ), and note that, since A is

semi simple, there is x ∈ A such that σ((a −b)u0x) 6= {0}. This implies that τ((a −b)u0x) 6= 0 and

shows that (5.3.5) does not hold for u = u0x. This contradiction shows (a−b)u = 0 for all u ∈F1(A ),

and the implication (3) ⇒ (4) is established.

In the sequel, let ϕ1 and ϕ2 be two maps from A onto B such that

σπ(ϕ1(a)ϕ2(b)) =σπ(ab), for all a,b ∈A . (5.3.6)

The following lemma shows that if (5.3.6) is satisfied and A is semisimple, then so is B. Recall that

the Jacobson radical of A , denoted by rad(A ), is the intersection of all maximal left (or right) ideals

of A and coincides with the collection of all elements x ∈A satisfying r(xa) = 0 for all a ∈A .

Lemma 5.3.2. Ifϕ1 andϕ2 are maps from A onto B satisfying (5.3.6), then the following assertions

hold.

(i) ϕ1(rad(A )) = rad(B) and ϕ2(rad(A )) = rad(B).

(ii) If A is semisimple, then so is B.

(iii) If A is semisimple, then 0 is the only element a ∈A for which ϕ1(a) = 0 or ϕ2(a) = 0.

Proof. (i) Assume that a ∈ rad(A ) and note that, since ϕ1 and ϕ2 satisfy (5.3.6), we have

{0} =σ(ax) ⇒ {0} =σπ(ax) =σπ
(
ϕ1(a)ϕ2(x)

) ⇒ σ
(
ϕ1(a)ϕ2(x)

)= {0}

for all x ∈ A . This and the surjectivity of ϕ2 show that r
(
ϕ1(a)y

) = 0 for all y ∈ B. Hence ϕ1(a) ∈
rad(B) and thus ϕ1(rad(A )) ⊂ rad(B). Since ϕ1 is surjective, the reverse inclusion holds in a simi-

lar way.

(ii) If A is semisimple, then rad(A ) = {0} and thus rad(B) = {ϕ1(0)} implies that ϕ1(0) = 0 and

hence B is also semisimple.

(iii) If A is semisimple and ϕ1(a) = 0 for some a ∈A , then

{0} =σ(0×ϕ2(x)) =σ(ϕ1(a)ϕ2(x)) ⇒ {0} =σπ(ϕ1(a)ϕ2(x)) =σπ(ax) ⇒ {0} =σ(ax)

for all x ∈A , and thus a = 0 since A is semisimple. The statements forϕ2 can be shown in a similar

way.

We also need the next lemma as a tool.

Lemma 5.3.3. If K is a compact subset of the open unit disc and contains at least two nonzero ele-

ments, then there is a rational function f with the following properties:

(i) f (0) = 0.
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(ii) deg( f ) ≤ 2, and thus f has the form

f (z) = Az2 +B z

C z2 +Dz +E

for some suitable constants A, ...,E.

(iii) f is analytic on an open neighborhood of K .

(iv) f (K ) is a subset of closed unit disc that intersects the unit circle at two or more points.

Proof. We may assume that (0,1)∩K 6= ; and also (−1,0)∩K 6= ;. If this is not the case, since there

are two distinct points z1, z2 ∈ K \ {0}, we can apply h(z) = az +bz2 with appropriate coefficients a

and b such that h(z1) ∈ (0,1) and h(z2) ∈ (−1,0) and moreover h(K ) still stays inside the open unit

disc D. For example, with t > 0 and

a =−t
z2

1 + z2
2

z1z2(z1 − z2)
and b = t

z1 + z2

z1z2(z1 − z2)
,

we get h(z1) = t and h(z2) =−t and then with t small enough h(K ) resides in D.

Since h(K ) has at least two nonzero elements, there is a disc D(c,r ) centered at point c and of radius

r such that h(K ) ⊂ D(c,r ) and moreover h(K ) intersects ∂D(c,r ) at least at two distinct points. The

verification is geometrical as follows. Consider all closed discs D(c,r ) which contains h(K ) and

let r0 = inf r . Hence, there is a sequence (cn ,rn) such that h(K ) ⊂ D(cn ,rn) and rn → r0. Without

loss of generality, we may also assume that cn is convergent, say to c0, since otherwise we can take

a subsequence with such a property. Therefore, h(K ) ⊂ D(c0,r0) and r0 is the smallest radius for

which the preceding inclusion works. Note that since t and −t are in K , we must have r0 > 0 and

0 ∈ D(c0,r0). The disc D(c0,r0) fulfills the required property, i.e., h(K ) touches its frontiers at least

at two distinct points. First of all, h(K ) has to touch the frontier at a point since otherwise we

can decrease r0. Secondly, if it touches just at one point, say a, we can translate the disc on the

direction of diagonal passing through a by ε> 0, where ε is small enough, and put h(K ) inside the

translated disc. Hence, its radius can again be decreased, which is a contradiction. Therefore, h(K )

must touch ∂D(c0,r0) at least at two points.

Put

g (z) = (c − z)/r.

Then g ◦h fulfils the properties (2)− (3)− (4) except that possibly (g ◦h)(0) = c/r 6= 0. To arrange

for this property, if it does not hold, we are forced to introduce a finite pole. Consider the disc

automorphism

τ(z) = d − z

1− d̄ z
,

where d = c/r ∈D. Then the function

f (z) = (τ◦ g ◦h)(z) = r (az +bz2)

c̄(az +bz2)+ r 2 −|c|2
satisfies all the properties (1)− (4).
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The next lemma shows that if ϕ1 and ϕ2 are maps from A onto B satisfying (5.3.6) and A is

semisimple, then either both socles of A and B are essential or both are not. It also tells us that

both maps preserve the rank one elements in both directions. Its proof uses the above lemma.

Lemma 5.3.4. Assume that A is semisimple, and ϕ1 and ϕ2 are maps from A onto B satisfying

(5.3.6). Then the following statements hold.

(i) Both maps ϕ1 and ϕ2 preserve rank one elements; i.e., ϕ1
(
F1(A )

)=F1(B) and ϕ2
(
F1(A )

)=
F1(B).

(ii) Soc(A ) is essential if and only if Soc(B) is essential.

Proof. (i ) Let u ∈ A be a rank one element, and note that ϕ1(u) 6= 0, by Lemma 5.3.2. Our aim

is to show that ϕ1(u) is a rank one element in B by proving that σ(ϕ1(u)y) contains at most one

nonzero element for all y ∈B. By (5.3.6), we have

σπ(ϕ1(u)ϕ2(x)) =σπ(ux) = {τ(ux)}

for all x ∈A . Asϕ2 is surjective, we see thatσπ(ϕ1(u)y) contains one element for all y ∈B. Now, for

the sake of contradiction, suppose that there exists y0 ∈ B such that σ(ϕ1(u)y0) contains at least

two nonzero elements. Without loss of generality, we may assume that spectral radius of ϕ1(u)y0

is less than 1/2. By Lemma 5.3.3, we conclude that there exists an analytic function f on the open

unit disc D such that f (0) = 0 and f (σ(ϕ1(u)y0)) is a subset of closed unit disc that intersects the

unit circle T at two or more points. Moreover, the spectral mapping theorem tells us that

f (σ(ϕ1(u)y0)) =σ( f (ϕ1(u)y0)). (5.3.7)

As f is analytic on D and f (0) = 0, we can write f (z) = zg (z), (z ∈ D), where g is also analytic on

D. From (5.3.7), the spectrum of the element f (ϕ1(u)y0) =ϕ1(u)y0g (ϕ1(u)y0) is a subset of closed

unit disk and intersectsT at two or more points. This contradicts the fact thatσπ(ϕ1(u)y) contains

one element for all y ∈B, and shows that ϕ1(u) is a rank one element in B; as desired.

(i i ) Assume that Soc(B) is essential and let x ∈A such that x.Soc(A ) = {0}. In particular, we have

xu = 0 and thus

{0} =σ(xu) ⇒ {0} =σπ(xu) =σπ(ϕ1(x)ϕ2(u)) ⇒ {0} =σ(ϕ1(x)ϕ2(u))

for all u ∈F1(A ). From this and (1), it follows that τ(ϕ1(x)v) = 0 for all v ∈F1(B). Note that, since

B is semisimple too by Lemma 5.3.2, the essentiality of the socle of B and Lemma 5.3.1 show that

ϕ1(x) = 0. Now, Lemma 5.3.2 tells us that x = 0 and Soc(A ) is essential. The converse runs in a

similar way and we therefore omit the details.

The next lemma is a variant of Lemma 5.3.1, and is needed for the proof of Theorem 5.2.4. Its proof

uses Lemma 5.3.1.
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Lemma 5.3.5. For every two elements a and b in a semisimple Banach algebra A , the following

statements are equivalent.

(i) σ(uau) =σ(ubu) for all u ∈F1(A ).

(ii) σπ(uau) =σπ(ubu) for all u ∈F1(A ).

(iii) τ(uau) = τ(ubu) for all u ∈F1(A ).

(iv) τ(uau) = τ(ubu) for all nonquasinilpotent elements u ∈F1(A ).

(v) (a −b) ·Soc(A ) = {0}. In particular, a = b if Soc(A ) is essential.

Proof. We only need to show that the implication (i v) ⇒ (v) holds. Assume that τ(uau) = τ(ubu)

for all nonquasinilpotent elements u ∈F1(A ), and note that, since τ(au)τ(u) = τ(uau) = τ(ubu) =
τ(bu)τ(u), we have

τ(au) = τ(bu) (5.3.8)

for all nonquasinilpotent elements u ∈ F1(A ). Now, we shall show that (5.3.8) holds for all u ∈
F1(A ). Fix a quasinilpotent element u ∈F1(A ) so that τ(u) = 0, and note that, since A is semisim-

ple, there is x ∈A such that τ(xu) 6= 0 and thus τ((1− x)u) =−τ(xu) 6= 0. Therefore, (5.3.8) applied

to the nonquasinilpotent elements xu and (1−x)u gives that

τ(au) = τ(axu)+τ(a(1−x)u) = τ(bxu)+τ(b(1−x)u) = τ(bu).

Now, we have τ(au) = τ(bu) for all u ∈ F1(A ) and Lemma 5.3.1 implies that (a −b) ·Soc(A ) = {0};

as desired.

Now, we turn our attention to the permanence properties of maps between Banach algebras pre-

serving the peripheral spectrum of triple products of elements. In what follows, let ϕ1 and ϕ2 be

two maps from A onto B such that

σπ(ϕ1(a)ϕ2(b)ϕ1(a)) =σπ(aba), for all a,b ∈A . (5.3.9)

The following lemma shows that if (5.3.9) is satisfied and A is semisimple, then so is B. It is a

variant of Lemma 5.3.2.

Lemma 5.3.6. If ϕ1 and ϕ2 are maps from A onto B satisfying (5.3.9) and if A is semisimple, then

B is semisimple.

Proof. Let b ∈ rad(B), and note that, since ϕ2 is surjective, there is a ∈A such that ϕ2(a) = b. For

every x ∈A , we have ϕ1(x)bϕ1(x) ∈ rad(B) and thus

{0} =σπ
(
ϕ1(x)bϕ1(x)

)=σπ(
ϕ1(x)ϕ2(a)ϕ1(x)

)=σπ(xax).

As A is semisimple, Theorem 5.6.3 implies that a = 0, and thus rad(B) ⊂ {ϕ2(0)}. As rad(B) is an

ideal, we conclude that rad(B) = {0} and B is semisimple.
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5.4 Proof of Theorem 5.2.1

The proof consists of several steps.

Step 1. Both ϕ1 and ϕ2 are linear and bijective.

By Lemma 5.3.2 and Lemma 5.3.4, both algebras A and B are semisimple with essential socles,

and both maps ϕ1 and ϕ2 preserve elements of rank one. Now, we proceed to show first that ϕ1

and ϕ2 are additive. Let v ∈ B be a rank one element of B, and let u ∈ A be a rank one element

such that ϕ2(u) = v . Since ϕ1 and ϕ2 satisfy (5.2.3), we have

τ
(
ϕ1(a +b)v

) = τ(ϕ1(a +b)ϕ2(u))

= τ((a +b)u) = τ(au)+τ(bu)

= τ(ϕ1(a)ϕ2(u))+τ(ϕ1(b)ϕ2(u))

= τ
((
ϕ1(a)+ϕ1(b)

)
ϕ2(u)

)
= τ

((
ϕ1(a)+ϕ1(b)

)
v
)

for all a, b ∈A . By the arbitrariness of the rank one element v ∈B and Lemma 5.3.1, we conclude

that

ϕ1(a +b) =ϕ1(a)+ϕ1(b)

for all a, b ∈A , and so ϕ1 is additive. The additivity of ϕ2 can be shown in a similar way.

Next, we show that ϕ1 and ϕ2 are homogenous. For every a ∈A and λ ∈C, we have

σ(λϕ1(a)ϕ2(u)) =λσ(ϕ1(a)ϕ2(u)) =λσ(au) =σ(λau) =σ(ϕ1(λa)ϕ2(u))

for all u ∈ F1(A ). By Lemma 5.3.1, we have ϕ1(λa) = λϕ1(a) for all a ∈ A and λ ∈ C, and ϕ1 is

homogenous. The homogeneity of ϕ2 can be shown in a similar way.

As ϕ1 and ϕ2 are linear, Lemma 5.3.2 tells us that ϕ1 and ϕ2 are injective and are, in fact, bijective.

Step 2. ϕ1(1)ϕ2 and ϕ1ϕ2(1) are Jordan isomorphisms.

First we show thatϕ1(1)ϕ2 is surjective. Let z ∈B, and let us show that there exists x ∈A such that

ϕ1(1)ϕ2(x) = z. By (5.2.3), we have σ(ϕ1(1)ϕ2(1)) = {1} and ϕ1(1)ϕ2(1) is an invertible element. So,

there exists y ∈B such that ϕ1(1)ϕ2(1)y = 1. This multiplied by z gives ϕ1(1)ϕ2(1)y z = z. As ϕ2 is

surjective, there exists x ∈A such that ϕ2(x) =ϕ2(1)y z and thus

ϕ1(1)ϕ2(x) =ϕ1(1)ϕ2(1)y z = z.

This shows that ϕ1(1)ϕ2(x) is surjective; as claimed.
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From (5.2.3) we have

σ
(
ϕ1(1)ϕ2(x)

)=σ(x)

for all x ∈ A . As A is semisimple and ϕ1(1)ϕ2 is a linear surjective map that preserves the spec-

trum, we conclude that ϕ1(1)ϕ2 is a Jordan isomorphism; see Theorem 5.2.5.

By the same way we can show that ϕ1ϕ2(1) is a Jordan isomorphism.

Step 3. Both elements ϕ1(1) and ϕ2(1) are invertible, and

ϕ1(1)ϕ2(1) =ϕ2(1)ϕ1(1) = 1. (5.4.10)

Since ϕ1ϕ2(1) is a Jordan isomorphism, we see that ϕ1(1)ϕ2(1) = 1. So, we only need to show that

ϕ2(1)ϕ1(1) = 1. As ϕ2 is surjective, there exists x such that ϕ2(x) = 1−ϕ2(1)ϕ1(1). We have

ϕ1(1)ϕ2(x) =ϕ1(1)
(
1−ϕ2(1)ϕ1(1)

)=ϕ1(1)−ϕ1(1)ϕ2(1)ϕ1(1) = 0.

As ϕ1(1)ϕ2 is bijective, we see that x = 0 and 1−ϕ2(1)ϕ1(1) =ϕ2(x) =ϕ2(0) = 0; as desired.

Step 4. ϕ1(1)ϕ2 =ϕ1ϕ2(1).

Indeed, let a ∈A be an invertible element and letψ1(x) :=ϕ1(xa)ϕ2(1) andψ2(x) :=ϕ1(1)ϕ2(a−1x)

for all x ∈A . Clearly, we have

σ(ψ1(x)ψ2(y)) =σ(x y)

for all x, y ∈A . By Step 3, we have ψ1(1) = {ψ2(1)}−1 and thus

ϕ1(a)ϕ2(1) = {ϕ1(1)ϕ2(a−1)}−1 =ϕ1(1)ϕ2(a)

since ϕ1(1)ϕ2 is a Jordan isomorphism. From this and the linearity of both maps ϕ1ϕ2(1) and

ϕ1(1)ϕ2, we infer that this identity holds, in fact, for any arbitrary a ∈A .

5.5 Proof of Theorem 5.2.4

The "if" part is obvious since any Jordan isomorphismφ between A and B preserves the spectrum

and satisfies φ(x y x) =φ(x)φ(y)φ(x) for all x, y ∈A .

Conversely, assume that A is semisimple and B has an essential socle, and ϕ is a map from A

onto B satisfying (5.1.2). Note that, by Lemma 5.3.6, B is semisimple too. Now, let us first prove

that ϕ is a linear map. To do so, let us first show that ϕ is homogenous. Indeed, for every a, b ∈A

and λ ∈C, we have

σ
(
ϕ(a)λϕ(b)ϕ(a)

) = λσ
(
ϕ(a)ϕ(b)ϕ(a)

)=λσ(aba) =σ(aλba) =
= σ

(
ϕ(a)ϕ(λb)ϕ(a)

)
.
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As ϕ is surjective, Lemma 5.3.5 tell us that λϕ(b) = ϕ(λb) for all b ∈ A and λ ∈ C, and thus ϕ is

homogenous.

Second, let us show that ϕ is additive. From (5.1.2) and Jacobson’s lemma, we have

σ
(
ϕ(x)(ϕ(u))2)∪ {0} =σ(xu2)∪ {0} (x,u ∈A ).

Taking into consideration that ϕ is surjective, we conclude that u2 ∈F1(A ) if and only if
(
ϕ(u)

)2 ∈
F1(B)). By taking x = a +b and u ∈A such that u2 ∈F1(A ), we obtain

σ
(
ϕ(a +b)(ϕ(u))2)∪ {0} =σ((a +b)u2)∪ {0} (a, b ∈A ).

Just as in the proof of Theorem 5.2.1, we get

τ
(
vϕ(a +b)v

)= τ(ϕ(a +b)v2)= τ((ϕ(a)+ϕ(b)
)
v2)= τ(v

(
ϕ(a)+ϕ(b)

)
v
)

for all v ∈F1(B). Lemma 5.3.5 implies that

ϕ(a +b) =ϕ(a)+ϕ(b) (a,b ∈A ),

and ϕ is additive; as claimed.

Now, consider the linear map φ :=ϕ(1)ϕ(.)ϕ(1), and note that, by (5.1.2), it satisfies

σ(x) =σ(φ(x)) (x ∈A ).

As {1} =σ(ϕ(1)ϕ(1)ϕ(1)), we see that ϕ(1) is invertible and thus φ is a surjective map. By Theorem

5.2.5, we have that φ=ϕ(1)ϕϕ(1) is a Jordan isomorphism. Consequently, we have

φ(1) =ϕ(1)ϕ(1)ϕ(1) = 1

and thatϕ(1) is an invertible element. To finish, we only need to show thatϕ(1) is a central element.

From (5.1.2) we have σ
(
ϕ(1)ϕ(a)ϕ(1)

)3 = σ(a)3 = σ(a3) = σ(ϕ(a)3) = σ(ϕ(a))3 for all a ∈ A . It

follows that r(ϕ(1)2ϕ(a)) = r(ϕ(a)) for all a ∈A and thus, by [24, Theorem 3.1], ϕ(1)2 =ϕ(1)−1 is a

central element of B.

5.6 Remarks and comments

In Section 3, we established some permanence properties of maps preserving the peripheral spec-

trum and we could describe the form of such maps if the algebras A and B are of particular type

such as being von Neumann algebras. We also would like to point out that we can particular-

ize Theorem 5.2.1 in the case of the algebra of operators on a complex Banach space, and obtain

the main result of [68, 69]. Let X and Y denote infinite-dimensional complex Banach spaces and

B(X ,Y ) denote the space of all bounded linear maps from X into Y . When X = Y , we simply write

B(X ) instead of B(X , X ). For any operator T ∈B(X ), let T ∗ denote as usual its adjoint on the dual

space X ∗ of X .
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Corollary 5.6.1. Two maps ϕ1 and ϕ2 from B(X ) onto B(Y ) satisfy (5.2.3) if and only if one of the

following statements holds.

(i) There exist two bijective mappings A, B ∈ B(X ,Y ) such that ϕ1(T ) = AT B−1 and ϕ2(T ) =
BT A−1 for all T ∈B(X ).

(ii) There exist two bijective mappings A, B ∈ B(X ∗,Y ) such that ϕ1(T ) = AT ∗B−1 and ϕ2(T ) =
BT ∗A−1 for all T ∈B(X ). This case can not occur if X or Y is not reflexive.

Recently, Argyros and Haydon in [4] constructed a complex separable and infinite-dimensional

Banach space X such that B(X ) =C1+K (X ), where K (X ) is the closed ideal of all compact oper-

ators on X . For such a space X , every left/right invertible operator T ∈B(X ) is invertible and thus

σ(T S) = σ(ST ) for all T,S ∈ B(X ). So, the map ϕ from B(X ) to B(X ∗) defined by ϕ(T ) :=±T ∗ for

all T ∈B(X ) satisfies

σ(ϕ(T )ϕ(S)) =σ(T ∗S∗) =σ((ST )∗) =σ(ST ) =σ(T S)

for all T, S ∈B(X ). This example shows that a map satisfying (5.1.1) is not necessarily multiplica-

tive.

One can particularize as well Theorem 5.2.4 in the case of the algebra of operators on a complex

Banach space. However, we omit the details and leave them for the reader.

In [3, 24], the question whether for given two elements a, b ∈A the conditionσ(ax) =σ(bx) for all

x ∈A entails a = b was studied, and an affirmative answer has been obtained in [3, 24] for various

special cases and for some classes of algebras, including C∗−algebras. While in [21], Braatvedt and

Brits showed that the answer is always affirmative if A is a semismple Banach algebra.

Theorem 5.6.2 ([21]). Let A be a semisimple Banach algebra and a,b be two elements in A . Then

the following assertions are equivalent.

(i) a = b.

(ii) σ(ax) =σ(bx) for all x ∈A .

(iii) σ(ax) =σ(bx) for all x ∈A satisfying r(x −1) < 1.

The following theorem is variant of Braatvedt and Brits’ result that uses the triple product. Its proof

is similar to Braatvedt and Brits’ result with some improvements for this case.

Theorem 5.6.3. Let A be a semisimple Banach algebra and a,b be two elements in A . If

σ(xax) =σ(xbx) (5.6.11)

for all x ∈A , then a = b.
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Proof. Let x be an element in A satisfying r(x−1) < 1, and note that, by the holomorphic calculus,

x = e y for some y ∈A . Using (5.6.11), we have

σ
(
e

y
2 ae

y
2

)
=σ

(
e

y
2 be

y
2

)
.

By Jacobson’s lemma, we then have σ(ax) \ {0} = σ(bx) \ {0}. But, since x is invertible, we actually

obtain σ(ax) = σ(bx). Since x ∈ A is an arbitrary element satisfying r(x −1) < 1, Theorem 5.6.2

implies that a = b, and the proof is therefore complete.

In [24], Brešar and Špenko discussed surjective maps between A and B satisfying

σ
(
ϕ(x)ϕ(y)ϕ(z)

)=σ(x y z) (5.6.12)

for all x, y, z ∈ A . The next result shows that such a map is multiplicative up to a multiplicative

invertible central element of B. Its proof uses Theorem 5.6.2 and the same arguments provided in

[24].

Proposition 5.6.4. Assume that A and B are semisimple Banach algebras. A surjective map ϕ :

A → B satisfies (5.6.12) if and only if ϕ(1) is a central invertible element of B for which ϕ(1)3 = 1

and ϕ(1)2ϕ is isomorphism.

Proof. Assume that ϕ satisfies (5.6.12). For every x, y, z ∈A , we have

σ(ϕ(1)ϕ(x y)ϕ(z)) =σ(x y z) =σ(ϕ(x)ϕ(y)ϕ(z)).

By the surjectivity of ϕ and Theorem 5.6.2, we get that ϕ(1)ϕ(x y) = ϕ(x)ϕ(y) for all x, y ∈ A . For

y = 1, we have ϕ(1)ϕ(x) = ϕ(x)ϕ(1) for all x ∈ A and ϕ(1) is a central element of B for which

σ(ϕ(1)3) = {1}. Hence, ϕ(1)3 = 1 and ϕ(1)2ϕ is multiplicative.
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Conclusion

In this thesis, some nonlinear preserver problems have been considered. In Chapter 3, the charac-

terization of surjective maps ϕ : B(X ) →B(Y ) that satisfy

c(ϕ(S)±ϕ(T )) = c(S ±T ), (S,T ∈B(X )),

is given, where c(·) stands either for the minimum modulus, or the surjectivity modulus, or the

maximum modulus. The next step could be to extend these results to the general case, when A

and B are semisimple Banach algebras, i.e., to describe surjective maps ϕ : A →B that satisfy

c(ϕ(a)±ϕ(b)) = c(a ±b), (a,b ∈A ).

In Chapter 4, the characterization of bijective bicontinuous maps ϕ : B(X ) →B(Y ) that satisfy

γ(ϕ(S ±ϕ(T )) = γ(S ±T ), (S,T ∈B(X )),

is obtained. The natural extension would be to get rid of the condition of bicontinuity ofϕ. Also, as

in the previous case, it would be good to solve the problem for general semisimple Banach algebras

A and B, i.e., to describe surjective maps ϕ : A →B that satisfy

γ(ϕ(a)±ϕ(b)) = γ(a ±b), (a,b ∈A ).

It would be interesting to consider the problems of characterizing surjective maps ϕ : A →B that

satisfy one of the following conditions

d(ϕ(a)ϕ(b)) = d(ab), (a,b ∈A ),

or

d(ϕ(a)ϕ(b)ϕ(a)) = d(aba), (a,b ∈A ),

or

d(ϕ(a)◦ϕ(b)) = d(a ◦b), (a,b ∈A ),

where d(·) stands either for the minimum modulus, or the surjectivity modulus, or the maximum

modulus, or the reduced minimum modulus and in the last equality the Jordan product is consi-

dered. Before passing to the general case, one could try to solve these problems for C∗-algebras.
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In Chapter 5, the characterization of surjective maps ϕ1,ϕ2 between semisimple Banach algebra

A and a Banach algebra B with an essential socle that satisfy

σ
(
ϕ1(a)ϕ2(b)

)=σ(ab), (a,b ∈A ),

is given. A next step could be finding similar results for peripheral spectrum, i.e., to describe surjec-

tive mapsϕ1,ϕ2 between semisimple Banach algebra A and a Banach algebra B with an essential

socle, such that

σπ
(
ϕ1(a)ϕ2(b)

)=σπ(ab), (a,b ∈A ).

The condition could be changed to the Jordan product, as follows :

σπ
(
ϕ1(a)◦ϕ2(b)

)=σπ(a ◦b), (a,b ∈A ).

Under the same assumptions on Banach algebras A and B the characterization of a surjective

map ϕ : A →B that satisfies

σ
(
ϕ(a)ϕ(b)ϕ(a)

)=σ(aba), (a,b ∈A ),

is given. It would be interesting to extend this result to the more general case of surjective mapsϕ1

and ϕ2 between the Banach algebras A and B that satisfy

σ
(
ϕ1(a)ϕ2(b)ϕ1(a)

)=σ(aba), (a,b ∈A ).
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